Advertisement

Microchimica Acta

, Volume 182, Issue 9–10, pp 1841–1848 | Cite as

An enzymatic glucose biosensor based on a glassy carbon electrode modified with cylinder-shaped titanium dioxide nanorods

  • Zhanjun YangEmail author
  • Youbao Xu
  • Juan Li
  • Zhiqin Jian
  • Suhua Yu
  • Yongcai Zhang
  • Xiaoya Hu
  • Dionysios D. DionysiouEmail author
Original Paper

Abstract

We describe a highly sensitive electrochemical enzymatic glucose biosensor. A glassy carbon electrode was modified with cylinder-shaped titanium dioxide nanorods (TiO2-NRs) for the immobilization of glucose oxidase. The modified nanorods and the enzyme biosensor were characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, electrochemical impedance spectroscopy and cyclic voltammetry. The glucose oxidase on the TiO2-NRs displays a high activity and undergoes fast surface-controlled electron transfer. A pair of well-defined quasi-reversible redox peaks was observed at −0.394 and −0.450 V. The TiO2-NRs provide a good microenvironment to facilitate the direct electron transfer between enzyme and electrode surface. The biosensor has two linear response ranges, viz. from 2.0 to 52 μM, and 0.052 to 2.3 mM. The lower detection limit is 0.5 μM, and the sensitivity is 68.58 mA M−1 cm−2. The glucose biosensor is selective, well reproducible, and stable. In our perception, the cylindrically shaped TiO2-NRs provide a promising support for the immobilization of proteins and pave the way to the development of high-performance biosensors.

Graphical Abstract

A novel and efficient electrochemical biosensor is presented for highly sensitive detection of glucose based on the immobilization of glucose oxidase on a cylinder-shaped TiO2 nanorod-modified electrode

Keywords

Cylinder-shaped titanium dioxide Nanorods Glucose oxidase Glucose Biosensor 

Notes

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (21475116, 21275124), The Priority Academic Program Development of Jiangsu Higher Education Institution (PAPD), University Natural Science Foundation of Jiangsu Province (13KJB150039) and the Open Research Fund of State Key Laboratory of Analytical Chemistry for Life Science (SKLACLS1410). Also, many thanks to The Testing Center of Yangzhou University for all the characterizations.

Supplementary material

604_2015_1519_MOESM1_ESM.doc (62 kb)
ESM 1 (DOC 62 kb)

References

  1. 1.
    Wang Y, Shao YY, Matson DW, Li JH, Lin YH (2010) Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 4:1790CrossRefGoogle Scholar
  2. 2.
    Dong SY, Li N, Suo GC, Huang TL (2013) Inorganic/organic doped carbon aerogels as biosensing materials for the detection of hydrogen peroxide. Anal Chem 85:11739CrossRefGoogle Scholar
  3. 3.
    Koo B, Park J, Kim Y, Choi SH, Sung YE, Hyeon T (2006) Simultaneous phase- and size-controlled synthesis of TiO2 nanorods via non-hydrolytic sol–gel reaction of syringe pump delivered precursors. J Phys Chem B 110:24318CrossRefGoogle Scholar
  4. 4.
    Wang Z, Xia D, Chen G (2008) The effects of different acids on the preparation of TiO2 nanostructure in liquid media at low temperature. Mater Chem Phys 111:313CrossRefGoogle Scholar
  5. 5.
    Liang HC, Li XZ (2009) Effects of structure of anodic TiO2 nanotube arrays on photocatalytic activity for the degradation of 2,3-dichlorophenol in aqueous solution. J Hazard Mater 162:1415CrossRefGoogle Scholar
  6. 6.
    Shi XH, Gu W, Li BY, Chen NN, Zhao K, Xian YZ (2014) Enzymatic biosensors based on the use of metal oxide nanoparticles. Microchim Acta 181:1CrossRefGoogle Scholar
  7. 7.
    Tu WW, Lei JP, Ding L, Ju HX (2009) Sandwich nanohybrid of single-walled carbon nanohorns-TiO2-porphyrin for electrocatalysis and amperometric biosensing towards chloramphenicol. Chem Commun 28:4227CrossRefGoogle Scholar
  8. 8.
    Lu JS, Li HN, Cui DM, Zhang YJ, Liu SQ (2014) Enhanced enzymatic reactivity for electrochemically driven drug metabolism by confining cytochrome P450 enzyme in TiO2 nanotube arrays. Anal Chem 86:8003CrossRefGoogle Scholar
  9. 9.
    Topoglidis E, Campbell CJ, Cass AEG, Durrant JR (2001) Factors that affect protein adsorption on nanostructured titania films. A novel spectroelectrochemical application to sensing. Langmuir 17:7899CrossRefGoogle Scholar
  10. 10.
    Yu JH, Liu SQ, Ju HX (2003) Glucose sensor for flow injection analysis of serum glucose based on immobilization of glucose oxidase in titania sol–gel membrane. Biosens Bioelectron 19:401CrossRefGoogle Scholar
  11. 11.
    Tian G, Fu H, Jing L, Xin B, Pan K (2008) Preparation and characterization of stable biphase TiO2 photocatalyst with high crystallinity, large surface area, and enhanced photoactivity. J Phys Chem C 112:3083CrossRefGoogle Scholar
  12. 12.
    Attar AS, Ghamsari MS, Hajiesmaeilbaigi F, Mirdamdi S, Katagiri K, Koumoto K (2009) Sol–gel template synthesis and characterization of aligned anatase-TiO2 nanorod arrays with different diameter. Mater Chem Phys 113:856CrossRefGoogle Scholar
  13. 13.
    Chung YA, Lee CY, Peng CW, Chiu HT (2006) Reactive template assisted growth of one-dimensional nanostructures of titanium dioxide. Mater Chem Phys 100:380CrossRefGoogle Scholar
  14. 14.
    Wei JJ, Liu HY, Dick AR, Yamamoto H, He YF, Waldeck DH (2002) Direct wiring of cytochrome c’s heme unit to an electrode: electrochemical studies. J Am Chem Soc 124:9591CrossRefGoogle Scholar
  15. 15.
    Xiao Y, Patolsky F, Katz E, Hainfeld JF, Willner I (2003) “Plugging into enzymes”: nanowiring of redox enzymes by a gold nanoparticle. Science 299:1877CrossRefGoogle Scholar
  16. 16.
    Beissenhirtz MK, Scheller FW, Stocklein WFM, Kurth DG, Mhwald H, Lisdat F (2004) Electroactive cytochrome c multilayers within a polyelectrolyte assembly. Angew Chem Int Ed 43:4357CrossRefGoogle Scholar
  17. 17.
    Mu C, Zhao Q, Xu D, Zhuang Q, Shao Y (2007) Silicon nanotube array/gold electrode for direct electrochemistry of cytochrome c. J Phys Chem B 111:1491CrossRefGoogle Scholar
  18. 18.
    Meng L, Jin J, Yang GX, Lu TH, Zhang H, Cai CX (2009) Nonenzymatic electrochemical detection of glucose based on palladium-single-walled carbon nanotube hybrid nanostructures. Anal Chem 81:7271CrossRefGoogle Scholar
  19. 19.
    Gooding JJ, Wibowo R, Liu JQ, Yang WR, Losic D, Orbons S, Mearns FJ, Shapter JG, Hibbert DB (2003) Protein electrochemistry using aligned carbon nanotube arrays. J Am Chem Soc 125:9006CrossRefGoogle Scholar
  20. 20.
    Lee S, Ringstrand BS, Stone DA, Firestone MA (2012) Electrochemical activity of glucose oxidase on a poly(ionic liquid)-Au nanoparticle composite. ACS Appl Mater Interfaces 4:2311CrossRefGoogle Scholar
  21. 21.
    Liu AH, Wei MD, Honma I, Zhou HS (2005) Direct electrochemistry of myoglobin in titanate nanotubes film. Anal Chem 77:8068CrossRefGoogle Scholar
  22. 22.
    Liu SQ, Ju HX (2003) Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode. Biosens Bioelectron 19:177CrossRefGoogle Scholar
  23. 23.
    Jia F, Shan CS, Li FH, Niu L (2008) Carbon nanotube/gold nanoparticles/polyethylenimine-functionalized ionic liquid thin film composites for glucose biosensing. Biosens Bioelectron 24:945CrossRefGoogle Scholar
  24. 24.
    Pingarron JM, Yanez-Sedeno P, Gonzalez-Cortes A (2008) Gold nanoparticle-based electrochemical biosensors. Electrochim Acta 53:5848CrossRefGoogle Scholar
  25. 25.
    Azamian BR, Davis JJ, Coleman KS, Bagshaw CB, Green MLH (2002) Bioelectrochemical single-walled carbon nanotubes. J Am Chem Soc 124:12664CrossRefGoogle Scholar
  26. 26.
    Deng SY, Jian GQ, Lei JP, Hu Z, Ju HX (2009) A glucose biosensor based on direct electrochemistry of glucose oxidase immobilized on nitrogen-doped carbon nanotubes. Biosens Bioelectron 25:373CrossRefGoogle Scholar
  27. 27.
    Kang XH, Wang J, Wu H, Aksay IA, Liu J, Lin YH (2009) Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens Bioelectron 25:901CrossRefGoogle Scholar
  28. 28.
    Shan CS, Yang HF, Han DX, Zhang Q, Ivaska A, Niu L (2010) Electrochemical determination of NADH and ethanol based on ionic liquid-functionalized graphene. Biosens Bioelectron 25:1070CrossRefGoogle Scholar
  29. 29.
    Dai ZH, Shao GJ, Hong JM, Bao JC, Shen J (2009) Immobilization and direct electrochemistry of glucose oxidase on a tetragonal pyramid-shaped porous ZnO nanostructure for a glucose biosensor. Biosens Bioelectron 24:1286CrossRefGoogle Scholar
  30. 30.
    Yang ZJ, Ren YY, Zhang YC, Li J, Li HB, Huang XC, Hu XY, Xu Q (2011) Nanoflake-like SnS2 matrix for glucose biosensing based on direct electrochemistry of glucose oxidase. Biosens Bioelectron 26:4337CrossRefGoogle Scholar
  31. 31.
    Steiner MS, Duerkop A, Wolfbeis OS (2011) Optical methods for sensing glucose. Chem Soc Rev 40:4805CrossRefGoogle Scholar
  32. 32.
    Vamvaki V, Tsagaraki K, Chaniotakis N (2006) Carbon nanofiber-based glucose biosensor. Anal Chem 78:5538CrossRefGoogle Scholar
  33. 33.
    Xu XA, Jiang SJ, Hu Z, Liu SQ (2010) Nitrogen-doped carbon nanotubes: high electrocatalytic activity toward the oxidation of hydrogen peroxide and its application for biosensing. ACS Nano 4:4292CrossRefGoogle Scholar
  34. 34.
    Yu JC, Zhang YJ, Liu SQ (2014) Enzymatic reactivity of glucose oxidase confined in nanochannels. Biosens Bioelectron 55:307CrossRefGoogle Scholar
  35. 35.
    Yang ZJ, Jian ZQ, Chen X, Li J, Qin PY, Zhao J, Jiao XA, Hu XY (2015) Electrochemical impedance immunosensor for sub-picogram level detection of bovine interferon gamma based on cylinder-shaped TiO2 nanorods. Biosens Bioelectron 63:190CrossRefGoogle Scholar
  36. 36.
    Wu YH, Hu SS (2007) Direct electrochemistry of glucose oxidase in a colloid Au-dihexadecylphosphate composite film and its application to develop a glucose biosensor. Bioelectrochemistry 70:335CrossRefGoogle Scholar
  37. 37.
    Deng CY, Chen JH, Chen XL, Xiao CH, Nie LH, Yao SZ (2008) Direct electrochemistry of glucose oxidase and biosensing for glucose based on boron-doped carbon nanotubes modified electrode. Biosens Bioelectron 23:1272CrossRefGoogle Scholar
  38. 38.
    Hui JN, Cui JW, Xu GQ, Adeloju SB, Wu YC (2013) Direct electrochemistry of glucose oxidase based on Nafion-graphene-GOD modified gold electrode and application to glucose detection. Mater Lett 108:88CrossRefGoogle Scholar
  39. 39.
    Tang H, Yan F, Tai QD, Chan HLW (2010) The improvement of glucose bioelectrocatalytic properties of platinum electrodes modified with electrospun TiO2 nanofibers. Biosens Bioelectron 25:1646CrossRefGoogle Scholar
  40. 40.
    Jang HD, Kim SK, Chang H, Roh KM, Choi JW, Huang JX (2012) A glucose biosensor based on TiO2-Graphene composite. Biosens Bioelectron 38:184CrossRefGoogle Scholar
  41. 41.
    Palanisamy S, Karuppiah C, Chen SM (2014) Direct electrochemistry and electrocatalysis of glucose oxidase immobilized on reduced graphene oxide and silver nanoparticles nanocomposite modified electrode. Colloids Surface B 114:164CrossRefGoogle Scholar
  42. 42.
    Tang S, Wang XZ, Lei JP, Hu Z, Deng SY, Ju HX (2010) Pt-dispersed flower-like carbon nanosheet aggregation for low-overpotential electrochemical biosensing. Biosens Bioelectron 26:432CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Zhanjun Yang
    • 1
    Email author
  • Youbao Xu
    • 1
  • Juan Li
    • 1
  • Zhiqin Jian
    • 1
  • Suhua Yu
    • 1
  • Yongcai Zhang
    • 1
  • Xiaoya Hu
    • 1
  • Dionysios D. Dionysiou
    • 2
    Email author
  1. 1.Jiangsu Key Laboratory of Environmental Material and Environmental Engineering, College of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouPeople’s Republic of China
  2. 2.Environmental Engineering and Science Program, Department of Biomedical, Chemical and Environmental Engineering (DBCEE)University of CincinnatiCincinnatiUSA

Personalised recommendations