Advertisement

Microchimica Acta

, Volume 182, Issue 9–10, pp 1797–1802 | Cite as

Aptamer biosensor for dopamine based on a gold electrode modified with carbon nanoparticles and thionine labeled gold nanoparticles as probe

  • Yaqiong Xu
  • Xu Hun
  • Fang Liu
  • Xiaolong Wen
  • Xiliang Luo
Original Paper

Abstract

We describe a biosensor for dopamine that is based on the use of a gold electrode modified with carbon nanoparticles (CNPs) coupled to thionine labeled gold nanoparticles (AuNPs) acting as signal amplifiers. The biosensor was constructed by first modifying the CNPs on the gold electrode and adsorbing the thionine on the surface of the AuNPs, and then linking the complementary strand of the dopamine aptamer to the AuNPs via gold-thiol chemistry. Next, dopamine aptamer is added and the duplex is formed on the surface. On addition of a sample containing dopamine, it will interact with aptamer and cause the release of the electrochemical probe which then will be adsorbed on the surface of the CNP-modified gold electrode and detected by differential pulse voltammetry. The current is linearly related to the concentration of dopamine in the 30 nM to 6.0 μM ranges. The detection limit is as low as 10 nM, and the RSD is 3.1 % at a 0.3 μM level (for n = 11). The protocol was successfully applied to the determination of dopamine in spiked human urine samples. We perceive that this method holds promise as a widely applicable platform for aptamer-based electrochemical detection of small molecules.

Graphical Abstract

The aptamer-based sensor for dopamine is based on the use of a gold electrode modified with carbon and gold nanoparticles for signal amplification.

Keywords

Dopamine Carbon nanoparticles Aptamer Differential pulse voltammetry Gold nanoparticles 

Notes

Acknowledgments

This research was supported by the Scientific and Technical Development Project of Qingdao (12-1-4-3-(18)-jch), the National Natural Science Foundation of China (21275085, 21305073), the Taishan Scholar Program of Shandong Province, the Open Project Program of State Key Laboratory of Food Science and Technology, Jiangnan University (SKLF-KF-201112), Shandong Provincial Natural Science Foundation (2012G0020221, ZR2014JL013) and the Scientific Research Startup Foundation of Qingdao University of Science and Technology for Talents.

Supplementary material

604_2015_1509_MOESM1_ESM.docx (115 kb)
ESM 1 (DOCX 114 kb)

References

  1. 1.
    Wightman RM, Amatore C, Engstrom RC, Hale PD, Kristensen EW, Kuhr WG, May LJ (1988) Real-time characterization of dopamine overflow and uptake in the rat striatum. Neuroscience 25(2):513–523CrossRefGoogle Scholar
  2. 2.
    Sanghavi BJ, Wolfbeis OS, Hirsch T, Swami NS (2015) Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Microchim Acta 182:1–43CrossRefGoogle Scholar
  3. 3.
    Yang X, Feng B, He X, Li F, Ding Y, Fei J (2013) Carbon nanomaterial based electrochemical sensors for biogenic amines. Microchim Acta 180(11–12):935–956CrossRefGoogle Scholar
  4. 4.
    Velasco M, Luchsinger A (1998) Dopamine: pharmacologic and therapeutic aspects. Am J Ther 5(1):37–43CrossRefGoogle Scholar
  5. 5.
    Beaulieu JM, Gainetdinov RR (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63(1):182–217CrossRefGoogle Scholar
  6. 6.
    Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79(4):368–376CrossRefGoogle Scholar
  7. 7.
    Venton BJ, Wightman RM (2003) Psychoanalytical Electrochemistry: Dopamine and Behavior. Anal Chem 75(19):414 A–421 ACrossRefGoogle Scholar
  8. 8.
    Kandel ER, Schwartz JH, Jessel TM (2000) Principles of Neural Science, 4th edn. York, NewGoogle Scholar
  9. 9.
    Reinhoud NJ, Brouwer HJ, van Heerwaarden LM, Korte-Bouws GA (2013) Analysis of glutamate, GABA, noradrenaline, dopamine, serotonin, and metabolites using microbore UHPLC with electrochemical detection. ACS Chem Neurosci 4(5):888–894CrossRefGoogle Scholar
  10. 10.
    Cui R, Gu YP, Bao L, Zhao JY, Qi BP, Zhang ZL, Xie ZX, Pang DW (2012) Near-infrared electrogenerated chemiluminescence of ultrasmall Ag2Se quantum dots for the detection of dopamine. Anal Chem 84(21):8932–8935Google Scholar
  11. 11.
    Wang Y, Chen H (2005) Integrated capillary electrophoresis amperometric detection microchip with replaceable microdisk working electrode. II. Influence of channel cross-sectional area on the separation and detection of dopamine and catechol. J Chromatogr A 1080(2):192–198CrossRefGoogle Scholar
  12. 12.
    Shou M, Ferrario CR, Schultz KN, Robinson TE, Kennedy RT (2006) Monitoring dopamine in vivo by microdialysis sampling and on-line CE-laser-induced fluorescence. Anal Chem 78(19):6717–6725CrossRefGoogle Scholar
  13. 13.
    Baron R, Zayats M, Willner I (2005) Dopamine-, L-DOPA-, adrenaline-, and noradrenaline-induced growth of Au nanoparticles: assays for the detection of neurotransmitters and of tyrosinase activity. Anal Chem 77(6):1566–1571CrossRefGoogle Scholar
  14. 14.
    Zheng Y, Wang Y, Yang X (2011) Aptamer-based colorimetric biosensing of dopamine using unmodified gold nanoparticles. Sens Actuators B 156(1):95–99CrossRefGoogle Scholar
  15. 15.
    Fabregat G, Armelin E, Aleman C (2014) Selective detection of dopamine combining multilayers of conducting polymers with gold nanoparticles. J Phys Chem B 118(17):4669–4682CrossRefGoogle Scholar
  16. 16.
    Zhou J, Wang W, Yu P, Xiong E, Zhang X, Chen J (2014) A simple label-free electrochemical aptasensor for dopamine detection. RSC Advances 4(94):52250–52255CrossRefGoogle Scholar
  17. 17.
    Hartman MR, Yang D, Tran TN, Lee K, Kahn JS, Kiatwuthinon P, Yancey KG, Trotsenko O, Minko S, Luo D (2013) Thermostable branched DNA nanostructures as modular primers for polymerase chain reaction. Angew Chem Int Ed 52(33):8699–8702CrossRefGoogle Scholar
  18. 18.
    Wen Y, Xu Y, Mao X, Wei Y, Song H, Chen N, Huang Q, Fan C, Li D (2012) DNAzyme-based rolling-circle amplification DNA machine for ultrasensitive analysis of microRNA in Drosophila larva. Anal Chem 84(18):7664–7669CrossRefGoogle Scholar
  19. 19.
    Russell C, Welch K, Jarvius J, Cai Y, Brucas R, Nikolajeff F, Svedlindh P, Nilsson M (2014) Gold nanowire based electrical DNA detection using rolling circle amplification. ACS Nano 8(2):1147–1153CrossRefGoogle Scholar
  20. 20.
    Dhama K, Karthik K, Chakraborty S, Tiwari R, Kapoor S, Kumar A, Thomas P (2014) Loop-mediated isothermal amplification of DNA (LAMP): a new diagnostic tool lights the world of diagnosis of animal and human pathogens: a review. Pak J Biol Sci 17(2):151–166CrossRefGoogle Scholar
  21. 21.
    Zhou W, Gong X, Xiang Y, Yuan R, Chai Y (2014) Target-triggered quadratic amplification for label-free and sensitive visual detection of cytokines based on hairpin aptamer DNAzyme probes. Anal Chem 86(1):953–958CrossRefGoogle Scholar
  22. 22.
    Hun X, Liu F, Mei Z, Ma L, Wang Z, Luo X (2013) Signal amplified strategy based on target-induced strand release coupling cleavage of nicking endonuclease for the ultrasensitive detection of ochratoxin A. Biosens Bioelectron 39(1):145–151CrossRefGoogle Scholar
  23. 23.
    Joneja A, Huang X (2011) Linear nicking endonuclease-mediated strand-displacement DNA amplification. Anal Biochem 414(1):58–69CrossRefGoogle Scholar
  24. 24.
    Huang YF, Liu H, Xiong X, Chen Y, Tan W (2009) Nanoparticle-mediated IgE-receptor aggregation and signaling in RBL mast cells. J Am Chem Soc 131(47):17328–17334CrossRefGoogle Scholar
  25. 25.
    Fang Y, Guo S, Li D, Zhu C, Ren W, Dong S, Wang E (2012) Easy synthesis and imaging applications of cross-linked green fluorescent hollow carbon nanoparticles. ACS Nano 6(1):400–409CrossRefGoogle Scholar
  26. 26.
    Liu J, Li J, Jiang Y, Yang S, Tan W, Yang R (2011) Combination of [small pi]-[small pi] stacking and electrostatic repulsion between carboxylic carbon nanoparticles and fluorescent oligonucleotides for rapid and sensitive detection of thrombin. Chem Commun 47(40):11321–11323CrossRefGoogle Scholar
  27. 27.
    Ding Y, Zhang X, Liu X, Guo R (2006) Adsorption characteristics of thionine on gold nanoparticles. Langmuir 22(5):2292–2298CrossRefGoogle Scholar
  28. 28.
    Wang W, Xu G, Cui XT, Sheng G, Luo X (2014) Enhanced catalytic and dopamine sensing properties of electrochemically reduced conducting polymer nanocomposite doped with pure graphene oxide. Biosens Bioelectron 58:153–156CrossRefGoogle Scholar
  29. 29.
    Weaver CL, Li H, Luo X, Cui XT (2014) A graphene oxide/conducting polymer nanocomposite for electrochemical dopamine detection: origin of improved sensitivity and specificity. J Mater Chem B 2(32):5209–5219CrossRefGoogle Scholar
  30. 30.
    Khoobi A, Ghoreishi SM, Behpour M, Masoum S (2014) Three-dimensional voltammetry: a chemometrical analysis of electrochemical data for determination of dopamine in the presence of unexpected interference by a biosensor based on gold nanoparticles. Anal Chem 86(18):8967–8973CrossRefGoogle Scholar
  31. 31.
    Palanisamy S, Ku S, Chen S-M (2013) Dopamine sensor based on a glassy carbon electrode modified with a reduced graphene oxide and palladium nanoparticles composite. Microchim Acta 180(11–12):1037–1042CrossRefGoogle Scholar
  32. 32.
    Xiangzhao A, Qiang M, Xingguang S (2013) Nanosensor for dopamine and glutathione based on the quenching and recovery of the fluorescence of silica-coated quantum dots. Microchim Acta 180(3–4):269–277CrossRefGoogle Scholar
  33. 33.
    Zhao W, Wang K, Wei Y, Ma Y, Liu L, Huang X (2014) Laccase Biosensor Based on Phytic Acid Modification of Nanostructured SiO2 Surface for Sensitive Detection of Dopamine. Langmuir 30(37):11131–11137CrossRefGoogle Scholar
  34. 34.
    Huang Y, Miao YE, Ji S, Tjiu WW, Liu T (2014) Electrospun carbon nanofibers decorated with Ag-Pt bimetallic nanoparticles for selective detection of dopamine. ACS Appl Mater Interfaces 6(15):12449–12456CrossRefGoogle Scholar
  35. 35.
    Fabregat G, Estrany F, Casas MT, Aleman C, Armelin E (2014) Detection of dopamine using chemically synthesized multilayered hollow microspheres. J Phys Chem B 118(17):4702–4709CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Yaqiong Xu
    • 1
  • Xu Hun
    • 1
  • Fang Liu
    • 1
  • Xiaolong Wen
    • 1
  • Xiliang Luo
    • 1
  1. 1.Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, Shandong Provincial Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular EngineeringQingdao University of Science and TechnologyQingdaoChina

Personalised recommendations