Microchimica Acta

, Volume 182, Issue 9–10, pp 1715–1722 | Cite as

An electrochemical DNA-based biosensor to study the effects of CdTe quantum dots on UV-induced damage of DNA

  • Lenka Hlavata
  • Ivana Striesova
  • Teodora Ignat
  • Jana Blaskovisova
  • Branislav Ruttkay-Nedecky
  • Pavel Kopel
  • Vojtech Adam
  • Rene Kizek
  • Jan LabudaEmail author
Original Paper


A DNA-based biosensor is presented that can be applied to the detection of DNA damage caused by UV-C radiation (254 nm) in the presence of CdTe quantum dots (QDs). The sensor is composed of a glassy carbon electrode whose surface was modified with a layer of dsDNA and another layer of CdTe QDs. The response of this sensor is based on (a) the intrinsic anodic signal of the guanine moiety in the DNA that is measured by square-wave voltammetry, and (b) the cyclic voltammetric response of the redox indicator system hexacyanoferrate(III/II). Depending on the size of the QDs, they exert a significant effect on the rate of the degradation of dsDNA by UV-C light, and even by visible light. Time-dependent structural changes of DNA include opening of the double helix (as indicated by an increase in the redox response of the guanine moiety due to easy electron exchange with the electrode when compared to the original helix state and by an increase in the voltammetric peak current of the hexacyanoferrate(III/II) anion after degradation of the negatively charged DNA backbone on the electrode). The effects of QDs were verified for salmon sperm DNA and calf thymus DNA, and further corroborated by experiments in which DNA solutions were irradiated in the presence of QDs.

Graphical Abstract

Scheme of the DNA-based biosensor with a layer CdTe QDs under the UV-C irradiation. The QDs enlarge damage to DNA demonstrating their size-dependent toxic effect. Two independent electrochemical methods (CV and SWV) prove a relationship between DNA degradation and exposure of the DNA biosensor to UV-C irradiation. The CdTe QDs increase damage to DNA demonstrating their size-dependent toxic effect.


DNA-based biosensor Quantum dots CdTe nanoparticles UV-C radiation DNA damage Gel electrophoresis 



This publication was supported by the Scientific Grant Agency VEGA of the Slovak Republic (Project No 1/0361/14), the Competence Centre for SMART Technologies for Electronics and Informatics Systems and Services (Project ITMS 26240220072) funded by the Research & Development Operational Programme from the ERDF and the National Scholarship Programme of the Slovak Republic for the Support of Mobility of Students, PhD students, University Teachers, Researchers and Artists (Teodora Ignat, ID 8632).


  1. 1.
    Rzigalinski BA, Strobl JS (2009) Cadmium containg nanoparticles: perspectives on pharmacology and toxicology of quantum dots. Toxicol Appl Pharmacol 238(3):280–288CrossRefGoogle Scholar
  2. 2.
    Sobrova P, Blazkova I, Chomoucka J, Drbohlavova J, Vaculovicova M, Kopel P, Hubalek J, Kizek R, Adam V (2013) Quantum dots and prion proteins. Is this a new challenge for neurodegenerative diseases imagining? Prion 7(5):349–358CrossRefGoogle Scholar
  3. 3.
    Ryvolova M, Chomoucka J, Drbohlavova J, Kopel P, Babula P, Hynek D, Adam V, Eckschlager T, Hubalek J, Stiborova M, Kaiser J, Kizek R (2012) Modern micro and nanoparticle-based paging techniques. Sensors 12(11):14792–14820CrossRefGoogle Scholar
  4. 4.
    Petersen EJ, Nelson BC (2010) Mechanisms and measurements of nanomaterial-induced oxidative damage to DNA. Anal Bioanal Chem 398:613–650CrossRefGoogle Scholar
  5. 5.
    Lovrić J (2005) Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death. Chem Biol 11(12):1227–1234CrossRefGoogle Scholar
  6. 6.
    Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84CrossRefGoogle Scholar
  7. 7.
    Rastogi RP, Richa KA, Tyagi MB, Sinha RB (2010) Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J Nucleic Acids 2010:592980CrossRefGoogle Scholar
  8. 8.
    Sinha RP, Häder DP (2010) UV induced DNA damage and repair: a review. Photochem Photobiol Sci 1(4):225–236CrossRefGoogle Scholar
  9. 9.
    Bottrill M, Green M (2011) Some aspects of quantum dot toxicity. Chem Commun 47(25):7039–7050CrossRefGoogle Scholar
  10. 10.
    Yin CX (2010) Electrochemical biosensing for dsDNA damage induced by PbSe quantum dots under UV irradiation. Chin Chem Lett 6(21):716–719CrossRefGoogle Scholar
  11. 11.
    Green M, Howman E (2005) Semiconductor quantum dots and free radical induced DNA nicking. Chem Commun 1:121–123CrossRefGoogle Scholar
  12. 12.
    Ipe BI, Lehnig M, Niemeyer CM (2005) On the generation of free radical species from quantum dots. Small 1:706–709CrossRefGoogle Scholar
  13. 13.
    Liang J, He Z, Zhang S, Huang S, Ai YH, Han H (2007) Study on DNA damage induced by CdSe quantum dots using nucleic acid molecular “light switches” as probe. Talanta 71(4):1675–1678CrossRefGoogle Scholar
  14. 14.
    Sadaf A, Zeshan B, Wang Z, Zhang R, Xu S, Wang C, Cui Y (2012) Toxicity evaluation of hydrophilic CdTe quantum dots and CdTe@SiO2 nanoparticles in mice. J Nanosci Nanotechnol 12(11):8287–8292CrossRefGoogle Scholar
  15. 15.
    Chibli H, Carlini L, Park S, Dimitrijevic NM, Nadeau JL (2011) Cytotoxicity of InP/ZnS quantum dots related to reactive oxygen species generation. Nanoscale 3:2552–2559CrossRefGoogle Scholar
  16. 16.
    Le NT, Kim JS (2013) Temperature dependent fluorescence of CuInS/ZnS quantum dots in near infrared region. J Nanosci Nanotechnol 13(9):6115–6119CrossRefGoogle Scholar
  17. 17.
    Hauser CAE, Zhang S (2010) Peptides as biological semiconductors. Nature 468(7323):516–517CrossRefGoogle Scholar
  18. 18.
    Oliveira-Brett AM, Piedade JAP, Silva LA, Diculescu VC (2004) Voltammetric determination of all DNA nucleotides. Anal Biochem 332:321–329CrossRefGoogle Scholar
  19. 19.
    Labuda J, Fojta M, Jelen F, Palecek E (2006) Electrochemical sensors with DNA recognition layer. In: Grimes CA, Dickey EC, Pishko MV (eds) Encyclopedia of sensors. American Scientific Publishers, Stevenson Ranch, p 201–228Google Scholar
  20. 20.
    Zitka O, Krizkova S, Skalickova S, Kopel P, Babula P, Adam V, Kizek R (2013) Electrochemical study of DNA damage by oxidation stress. Comb Chem High Throughput Screen 16(2):130–141Google Scholar
  21. 21.
    Švorc Ľ, Kalcher K (2014) Modification-free electrochemical approach for sensitive monitoring of purine DNA bases: simultaneous determination of guanine and adenine in biological samples using boron-doped diamond electrode. Sens Actuators B Chem 194:332–342CrossRefGoogle Scholar
  22. 22.
    Lucarelli F, Palchetti I, Marrazza G, Mascini M (2002) Electrochemical DNA biosensor as a screening tool for the detection of toxicants in water and wastewater sample. Talanta 56:949–957CrossRefGoogle Scholar
  23. 23.
    Labuda J, Brett AMO, Evtugyn G, Fojta M, Mascini M, Ozsoz M, Palchetti I, Paleček E, Wang J (2010) Electrochemical nucleic acid-based biosensors: concepts, terms and methodology, IUPAC Technical Report. Pure Appl Chem 82(5):1161–1187CrossRefGoogle Scholar
  24. 24.
    Labuda J (2011) Detection of damage to DNA using electrochemical and piezoelectric DNA-based biosensors. In: Mascini M, Palchetti I (eds) Nucleic acid biosensors for environmental pollution monitoring. Royal Society of Chemistry, Cambridge, p 121–140Google Scholar
  25. 25.
    Ziyatdinova G, Labuda J (2011) Complex electrochemical and impedimetric evaluation of DNA damage by using DNA biosensor based on a carbon screen-printed electrode. Anal Methods 3:2777–2782CrossRefGoogle Scholar
  26. 26.
    Hlavata L, Benikova K, Vyskocil V, Labuda J (2012) Evaluation of damage to DNA induced by UV-C radiation and chemical agents using electrochemical biosensors based on low molecular weight DNA and screen printed carbon electrode. Electrochim Acta 71:134–139CrossRefGoogle Scholar
  27. 27.
    Labuda J, Vyskocil V (2014) DNA/electrode interface, detection of damage to DNA using DNA-modified electrodes. In: Kreysa G, Ota K, Savinell RF (eds) Encyclopedia of applied electrochemistry. Springer, New York, p 346–350Google Scholar
  28. 28.
    Goodman SM, Singh V, Casamada J, Chatterjee A, Nagpal P (2014) Multiple energy exiton shelves in quantum-dot-DNA nanobioelectronics. J Phys Chem Lett 5:3909–3913CrossRefGoogle Scholar
  29. 29.
    Konecna M, Novotny K, Krizkova S, Blazkova I, Kopel P, Kaiser J, Hodek P, Kizek R, Adam V (2014) Identification of quantum dots labeled metallothionein by fast scanning laser-induced breakdown spectroscopy. Spectrochim Acta B 101:220–225CrossRefGoogle Scholar
  30. 30.
    Chomoucka J, Drbohlavova J, Ryvolova M, Sobrova P, Janu L, Adam V, Hubalek J, Kizek R (2012) Quantum dots: biological and biomedical application. In: Quantum dots: applications, synthesis and characterization. Nova Science Publishers, New YorkGoogle Scholar
  31. 31.
    Ferancova A, Rengaraj S, Kim Y, Labuda J, Sillanpää M (2010) Electrochemical determination of guanine and adenine by CdS microspheres modified electrode and evaluation of damage to DNA purine bases by UV radiation. Biosens Bioelectron 26(2):314–320CrossRefGoogle Scholar
  32. 32.
    Schafheimer N, King J (2013) Tryptophan cluster protects human cD-Crystallin from ultraviolet radiation-induced photoaggregation in vitro. Photochem Photobiol 89:1106–1115CrossRefGoogle Scholar
  33. 33.
    He YY, Jiang LJ (2000) Photosensitized damage to calf thymus DNA by a hypocrellin derivative: mechanisms under aerobic and anaerobic conditions. Biochim Biophys Acta 1523:29–36CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Lenka Hlavata
    • 1
  • Ivana Striesova
    • 1
  • Teodora Ignat
    • 1
    • 2
  • Jana Blaskovisova
    • 1
  • Branislav Ruttkay-Nedecky
    • 3
    • 4
  • Pavel Kopel
    • 3
    • 4
  • Vojtech Adam
    • 3
    • 4
  • Rene Kizek
    • 3
    • 4
  • Jan Labuda
    • 1
    Email author
  1. 1.Institute of Analytical Chemistry, Faculty of Chemical and Food TechnologySlovak University of Technology in BratislavaRadlinského 9Slovakia
  2. 2.Laboratory of NanobiotechnologyIMT-BucurestiBucharestRomania
  3. 3.Department of Chemistry and BiochemistryMendel University in BrnoBrnoCzech Republic
  4. 4.Central European Institute of TechnologyBrno University of TechnologyBrnoCzech Republic

Personalised recommendations