Microchimica Acta

, Volume 182, Issue 9–10, pp 1709–1714 | Cite as

Impedimetric aptamer-based determination of the mold toxin fumonisin B1

  • Xiujuan Chen
  • Yukun Huang
  • Xiaoyuan Ma
  • Fei Jia
  • Xiaofei Guo
  • Zhouping WangEmail author
Original Paper


We are presenting an aptasensor for the sensitive determination of fumonisin B1 (FB-1) via electrochemical impedance spectroscopy (EIS) and applying aptamer-based biorecognition. A thiolated aptamer for FB-1 was anchored onto the surface of gold nanoparticles (AuNPs) on a glassy carbon electrode. A significant increase in resistance (Ret) is found on interaction with FB-1 in the 0.1 nM to 100 μM concentration range, and the detection limit is as low as 2 pM. The assay was applied to determine FB-1 in spiked maize samples and gave recovery rates ranging from 91 to 105 %. The results demonstrate this method to present new possibilities in the application of aptamers in food safety analysis.

Graphical abstract

The electrodeposited AuNPs create a nanomaterial platform in situ for anchoring of FB-1 aptamers serving as recognition elements. The change in EIS signals induced by aptamer-target interactions was measured and a significant increase in resistance (Ret) is found on interaction with FB-1 in the 0.1 nM to 100 μM concentration range.


Fumonisin Biosensor Electrochemical impedance spectroscopy (EIS) Electrodeposited gold nanoparticles Aptamer 



This work was partly supported by the National S&T Support Program of China (2012BAK08B01), S&T Supporting Project of Jiangsu Province(BE2011621), and JUSRP51309A.

Conflict of interest

The authors declare no competing financial interests.

Supplementary material

604_2015_1492_MOESM1_ESM.doc (127 kb)
ESM 1 (DOC 127 kb)


  1. 1.
    Visconti A, Bruno Doko M, Solfrizzo M, Pascale M, Boenke A (1996) European intercomparison study for the determination of fumonisins in maize. Microchim Acta 123:55–61CrossRefGoogle Scholar
  2. 2.
    Nelson PE, Desjardins AE, Plattner RD (1993) Fumonisins, mycotoxins produced by Fusarium species: biology, chemistry and significance. Annu Rev Phytopathol 31:233–252CrossRefGoogle Scholar
  3. 3.
    Viquez OM, Castell-Perez ME, Shelby RA (1996) Occurrence of fumonisin B1 in maize grown in Costa Rica. J Agric Food Chem 44:2789–2791CrossRefGoogle Scholar
  4. 4.
    Shephard GS, van der Westhuizen L, Gatyeni PM, Somdyala NIM, Burger HM, Marasas WFO (2005) Fumonisin mycotoxins in traditional Xhosa maize beer in South Africa. J Agric Food Chem 53:9634–9637CrossRefGoogle Scholar
  5. 5.
    Ross PF, Nelson PE, Richard JL, Osweiler GD, Rice LG, Plattner RD, Wilson TM (1990) Production of fumonisins by Fusarium moniliforme and Fusarium proliferatum isolates associated with equine leukoencephalomalacia and a pulmonary edema syndrome in swine. Appl Eniron Microbiol 56:3225–3226Google Scholar
  6. 6.
    Gelderblom WCA, Kriek NPJ, Marasas WFO, Thiel PG (1991) Toxicity and carcinogenicity of the Fusarium moniliforme metabolite, fumonisin B1, in rats. Carcinogenesis 12:1247–1251CrossRefGoogle Scholar
  7. 7.
    International Agency for Research on Cancer (2002) Fumonisin B1. In: IARC monographs on the evaluation of carcinogenic risks to humans: some traditional herbal medicines, some mycotoxins, naphthalene and styrene. IARC Lyon France 82:301–366Google Scholar
  8. 8.
    Yoshizawa T, Yamashita A, Luo Y (1994) Fumonisin occurrence in corn from high- and low-risk areas for human esophageal cancer in China. Appl Environ Microbiol 60:1626–1629Google Scholar
  9. 9.
    Fifty-sixth the Joint FAO/WHO Expert Committee on Food Additives (JECFA) summary (2001) GenevaGoogle Scholar
  10. 10.
    Muscarella M, Magroa SL, Nardiello D, Palermo C, Centonze D (2008) Development of a new analytical method for the determination of fumonisins B1 and B2 in food products based on high performance liquid chromatography and fluorimetric detection with post-column derivatization. J Chromatogr A 1203:88–93CrossRefGoogle Scholar
  11. 11.
    Paepens C, De Saeger S, Van Poucke C, Dumoulin F, Van Calenbergh S, Van Peteghem C (2005) Development of a liquid chromatography/tandem mass spectrometry method for the quantification of fumonisin B1, B2 and B3 in cornflakes. Rapid Commun Mass Spectrom 19:2021–2029CrossRefGoogle Scholar
  12. 12.
    Plattner RD, Ross PF, Reagor J, Stedelin J, Rice LG (1991) Analysis of corn and cultured corn for fumonisin B1 by HPLC and GC/MS by four laboratories. J Vet Diagn Invest 3:357–358CrossRefGoogle Scholar
  13. 13.
    Li YS, Zhou Y, Lu SH, Guo DJ, Ren HL, Meng XM, Zhi BH, Lin C, Wang Z, Li XB, Liu ZS (2012) Development of a one-step test strip for rapid screening of fumonisins B1, B2 and B3 in maize. Food Control 24:72–77CrossRefGoogle Scholar
  14. 14.
    Wang S, Quan Y, Lee N, Kennedy IR (2006) Rapid determination of fumonisin B1 in food samples by enzyme-linked immunosorbent assay and colloidal gold immunoassay. J Agric Food Chem 54:2491–2495CrossRefGoogle Scholar
  15. 15.
    Wang YK, Yan YX, Ji WH, Wang H, Li SQ, Zou Q, Sun JH (2013) Rapid simultaneous quantification of zearalenone and Fumonisin B1 in corn and wheat by lateral flow dual immunoassay. J Agric Food Chem 61:5031–5036CrossRefGoogle Scholar
  16. 16.
    Hermann T, Patel DJ (2000) Biochemistry-adaptive recognition by nucleic acid aptamers. Science 287:820–825CrossRefGoogle Scholar
  17. 17.
    Levy-Nissenbaum E, Radovic-Moreno AF, Wang AZ, Langer R, Farokhzad OC (2008) Nanotechnology and aptamers: applications in drug delivery. Trends Biotechnol 26:442–449CrossRefGoogle Scholar
  18. 18.
    Yuan J, Wu S, Duan N, Ma X, Xia Y, Chen J, Ding Z, Wang Z (2014) A sensitive gold nanoparticle-based colorimetric aptasensor for staphylococcus aureus. Talanta 127:163–168CrossRefGoogle Scholar
  19. 19.
    Wu S, Duan N, Ma X, Xia Y, Wang H, Wang Z, Zhang Q (2012) Multiplexed fluorescence resonance energy transfer aptasensor between upconversion nanoparticles and graphene oxide for the simultaneous determination of mycotoxins. Anal Chem 84:6263–6270CrossRefGoogle Scholar
  20. 20.
    Baek SH, Wark AW, Lee HJ (2014) Dual nanoparticle amplified surface plasmon resonance detection of thrombin at subattomolar concentrations. Anal Chem 86:9824–9829CrossRefGoogle Scholar
  21. 21.
    Hansen JA, Wang J, Kawde AN, Xiang Y, Gothelf KV, Collins G (2006) Quantum-dot/aptamer-based ultrasensitive multi-analyte electrochemical biosensor. J Am Chem Soc 128:2228–2229CrossRefGoogle Scholar
  22. 22.
    Xue F, Wu J, Chu H, Mei Z, Ye Y, Liu J, Zhang R, Peng C, Zheng L, Chen W (2013) Electrochemical aptasensor for the determination of bisphenol A in drinking water. Microchim Acta 180:109–115CrossRefGoogle Scholar
  23. 23.
    Zhang HF, Shuang SM, Sun LL, Chen AJ, Qin Y, Dong C (2014) Label-free aptasensor for thrombin using a glassy carbon electrode modified with a graphene-porphyrin composite. Microchim Acta 181:189–196CrossRefGoogle Scholar
  24. 24.
    Moreau J, Challier L, Lalaoui N, Mavre F, Noel V, Limoges B, Schollhorn B, Fave C (2014) Rational design of a redox-labeled chiral target for an enantioselective aptamer-based electrochemical binding assay. Chem Eur J 20:2953–2959CrossRefGoogle Scholar
  25. 25.
    Willner I, Zayats M (2007) Electronic aptamer-based sensors. Angew Chem Int Ed Engl 46:6408CrossRefGoogle Scholar
  26. 26.
    Radi AE, O’Sullivan CK (2006) Aptamer conformational switch as sensitive electrochemical biosensor for potassium ion recognition. Chem Commun 32:3432–3434CrossRefGoogle Scholar
  27. 27.
    Eissa S, Ng A, Siaj M, Tavares AC, Zourob M (2013) Selection and identification of DNA aptamers against okadaic acid for biosensing application. Anal Chem 85:11794–11801CrossRefGoogle Scholar
  28. 28.
    Li X, Shen L, Zhang D, Qi H, Gao Q, Ma F, Zhang C (2008) Electrochemical impedance spectroscopy for study of aptamer–thrombin interfacial interactions. Biosens Bioelectron 23:1624–1630CrossRefGoogle Scholar
  29. 29.
    Jia F, Duan N, Wu S, Ma X, Xia Y, Wang Z, Wei X (2014) Impedimetric aptasensor for staphylococcus aureus based on nanocomposite prepared from reduced graphene oxide and gold nanoparticles. Microchim Acta 181:967–974CrossRefGoogle Scholar
  30. 30.
    Kadir MK, Tothill IE (2010) Development of an electrochemical immunosensor for fumonisins detection in foods. Toxins 2:382–398CrossRefGoogle Scholar
  31. 31.
    Jodra A, López MA, Escarpa A (2015) Disposable and reliable electrochemical magnetoimmunosensor for fumonisins simplified determination in maize-based foodstuffs. Biosens Bioelectron 64:633–638CrossRefGoogle Scholar
  32. 32.
    Castaneda MT, Alegret S, Merkoci A (2007) Electrochemical sensing of DNA using gold nanoparticles. Electroanalysis 19(7–8):743–753CrossRefGoogle Scholar
  33. 33.
    Liu S, Li Y, Li J, Jiang L (2005) Enhancement of DNA immobilization and hybridization on gold electrode modified by nanogold aggregates. Biosens Bioelectron 21:789–795CrossRefGoogle Scholar
  34. 34.
    Shim WB, Kim MJ, Mun H, Kim MG (2014) An aptamer-based dipstick assay for the rapid and simple detection of aflatoxin B1. Biosens Bioelectron 62:288–294CrossRefGoogle Scholar
  35. 35.
    Sun Y, Xu J, Li W, Cao B, Wang D, Yang Y, Lin Q, Li J, Zheng T (2014) Simultaneous detection of ochratoxin A and fumonisin B1 in cereal samples using an aptamer−photonic crystal encoded suspension array. Anal Chem 86:11797–11802CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Xiujuan Chen
    • 1
  • Yukun Huang
    • 1
  • Xiaoyuan Ma
    • 1
  • Fei Jia
    • 1
  • Xiaofei Guo
    • 1
  • Zhouping Wang
    • 1
    Email author
  1. 1.State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and TechnologyJiangnan UniversityWuxiChina

Personalised recommendations