Microchimica Acta

, Volume 182, Issue 7–8, pp 1527–1534 | Cite as

Specific recognition and fluorescent determination of aspirin by using core-shell CdTe quantum dot-imprinted polymers

  • Xiao Wei
  • Zhiping Zhou
  • Tongfan Hao
  • Yeqing Xu
  • Hongji Li
  • Kai Lu
  • Jiangdong Dai
  • Xudong Zheng
  • Lin Gao
  • Jixiang Wang
  • Yongsheng YanEmail author
  • Yanzhuo Zhu
Original Paper


A molecularly imprinted polymer (MIP) was deposited on the surface of CdTe quantum dots (QDs) to act as a recognition element for aspirin. The MIP was synthesized from 3-aminopropyltriethoxysilane as the functional monomer, aspirin as the template, and tetraethoxysilane as the cross-linker via a sol–gel process that leads to surface imprinting. It is shown that the fraction of QDs and the polymerization process affect size and morphology of the MIP-coated QDs. The optical stability, effects of pH, detection time and selective determination of aspirin were optimized. The fluorescence intensity of the particles (photoexcited at 400 nm and measured at 628 nm) decreases linearly with increasing concentration of aspirin in the 2.0–50 μmol L−1 range. The limit of detection (at an S/N of 3) is 0.25 μmol L−1. The method was successfully applied to the determination of aspirin in human urine and saliva.

Graphical Abstract

CdTe quantum dots, APTES (the functional monomer), aspirin (the template) and TEOS (the cross-linker) were copolymerized to form a surface-imprinted polymeric network around the template. After extraction of the template, the imprint-coated quantum dots are capable of specifically recognizing aspirin.


CdTe Polymer Selective Recognition Aspirin 



This work was financially supported by the National Natural Science Foundation of China (No. 21107037, No. 21176107, No. 21174057, No. 21277063, No. 21407057 and No. 21407064), National Basic Research Program of China (973 Program, 2012CB821500), Natural Science Foundation of Jiangsu Province (No. BK20140535), Ph.D. Innovation Programs Foundation of Jiangsu Province (No. KYLX_1032), National Postdoctoral Science Foundation (No. 2014 M561595), Postdoctoral Science Foundation funded Project of Jiangsu Province (No. 1401108C).

Supplementary material

604_2015_1463_MOESM1_ESM.doc (784 kb)
ESM 1 (DOC 784 kb)


  1. 1.
    Xu SF, Li JH, Chen LX (2011) Molecularly imprinted core-shell nanoparticles for determination of trace atrazine by reversible addition–fragmentation chain transfer surface imprinting. J Mater Chem 21:4346–4351CrossRefGoogle Scholar
  2. 2.
    Wulff G (2013) Fourty years of molecular imprinting in synthetic polymers: origin, features and perspectives. Microchim Acta 180:1359–1370CrossRefGoogle Scholar
  3. 3.
    Guan GJ, Liu BH, Wang ZY, Zhang ZP (2008) Imprinting of molecular recognition sites on nanostructures and its applications in chemosensors. Sensors 8:8291–8320CrossRefGoogle Scholar
  4. 4.
    Long CY, Mai ZB, Yang YF, Zhu BH, Xu XM, Lu L, Zou XY (2009) Determination of multi-residue for malachite green, gentian violet and their metabolites in aquatic products by high-performance liquid chromatography coupled with molecularly imprinted solid-phase extraction. J Chromatogr A 1216:2275–2281CrossRefGoogle Scholar
  5. 5.
    Jiang TH, Zhao LX, Chu BL, Feng QZ, Yan W, Lin JM (2009) Molecularly imprinted solid-phase extraction for the selective determination of 17β-estradiol in fishery samples with high performance liquid chromatography. Talanta 78:442–447CrossRefGoogle Scholar
  6. 6.
    Li SJ, Ge Y, Turner APF (2011) A Catalytic and positively thermosensitive molecularly imprinted polymer. Adv Funct Mater 21:1194–2000CrossRefGoogle Scholar
  7. 7.
    Liang RN, Song DA, Zhang RM, Qin W (2010) Potentiometric sensing of neutral species based on a uniform-sized molecularly imprinted polymer as a receptor. Angew Chem Int Ed 49:2556–2559CrossRefGoogle Scholar
  8. 8.
    Luo J, Cong JJ, Fang RX, Fei XM, Liu XY (2014) One-pot synthesis of a graphene oxide coated with an imprinted sol–gel for use in electrochemical sensing of paracetamol. Microchim Acta 181:1257–1266CrossRefGoogle Scholar
  9. 9.
    Yin JF, Cui Y, Yang GL, Wang HL (2010) Molecularly imprinted nanotubes for enantioselective drug delivery and controlled release. Chem Commun 46:7688–7690CrossRefGoogle Scholar
  10. 10.
    Xie CG, Zhang ZP, Wang DP, Guan GJ, Gao DM, Liu JH (2006) Surface molecular self-assembly strategy for TNT imprinting of polymer nanowire/nanotube arrays. Anal Chem 78:8339–8346CrossRefGoogle Scholar
  11. 11.
    Chronakis IS, Milosevic B, Frenot A, Ye L (2006) Generation of molecular recognition sites in electrospun polymer nanofibers via molecular imprinting. Macromolecules 39:357–361CrossRefGoogle Scholar
  12. 12.
    Yang HH, Zhang SQ, Tan F, Zhuang ZX, Wang XR (2005) Surface molecularly imprinted nanowires for biorecognition. J Am Chem Soc 127:1378–1379CrossRefGoogle Scholar
  13. 13.
    Bruchez JM, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016CrossRefGoogle Scholar
  14. 14.
    Chan WCW, Nie SM (1998) Quantum dot Bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018CrossRefGoogle Scholar
  15. 15.
    Dong YQ, Wang RX, Li GL, Chen CQ, Chi YW, Chen GN (2012) Polyamine-functionalized carbon quantum dots as fluorescent probes for selective and sensitive detection of copper ions. Anal Chem 84:6220–6224CrossRefGoogle Scholar
  16. 16.
    Tu RY, Liu BH, Wang ZY, Gao DM, Wang F, Fang QL, Zhang ZP (2008) Amine-Capped ZnS − Mn2+ nanocrystals for fluorescence detection of trace TNT explosive. Anal Chem 80:3458–3465CrossRefGoogle Scholar
  17. 17.
    Yuan JP, Guo WW, Yin JY, Wang EK (2009) Glutathione-capped CdTe quantum dots for the sensitive detection of glucose. Talanta 77:1858–1863CrossRefGoogle Scholar
  18. 18.
    Zhang W, He XW, Chen Y, Li WY, Zhang YK (2011) Composite of CdTe quantum dots and molecularly imprinted polymer as a sensing material for cytochrome c. Biosens Bioelectron 26:2553–2558CrossRefGoogle Scholar
  19. 19.
    Liu HL, Fang GZ, Li CM, Pan MF, Liu CC, Fan C, Wang S (2012) Molecularly imprinted polymer on ionic liquid-modified CdSe/ZnS quantum dots for the highly selective and sensitive optosensing of tocopherol. J Mater Chem 22:19882–19887CrossRefGoogle Scholar
  20. 20.
    Wei X, Meng MJ, Song ZL, Gao L, Li HJ, Dai JD, Zhou ZP, Li CX, Pan JM, Yu P, Yan YS (2014) Synthesis of molecularly imprinted silica nanospheres embedded mercaptosuccinic acid-coated CdTe quantum dots for selective recognition of λ-cyhalothrin. J Lumin 153:326–332CrossRefGoogle Scholar
  21. 21.
    Wei X, Zhou ZP, Dai JD, Hao TF, Li HJ, Xu YQ, Gao L, Pan JM, Li CX, Yan YS (2014) Composites of surface imprinting polymer capped Mn-doped ZnS quantum dots for room-temperature phosphorescence probing of 2,4,5-trichlorophenol. J Lumin 15:298–304CrossRefGoogle Scholar
  22. 22.
    Muralidharan B, Gopu G, Vedhi C, Manisankar P (2008) Voltammetric determination of analgesics using a montmorillonite modified electrode. Appl Clay Sci 42:206–213CrossRefGoogle Scholar
  23. 23.
    Lizarraga I, Chambers JP (2006) Involvement of opioidergic and α2-adrenergic mechanisms in the central analgesic effects of non-steroidal anti-inflammatory drugs in sheep. Res Vet Sci 80:194–200CrossRefGoogle Scholar
  24. 24.
    Beunza JJ, Martínez-González MÁ, Bes-Rastrollo M, Núñez-Córdoba JM, Toledo E, Alonso Á (2010) Aspirin, Non-aspirin analgesics and the risk of hypertension in the SUN cohort. Rev Esp Cardiol 63:286–293CrossRefGoogle Scholar
  25. 25.
    Moore TJ, Joseph MJ, Allen BW, Coury LA (1995) Enzymically Amplified voltammetric sensor for microliter sample volumes of salicylate. Anal Chem 67:1896–1902CrossRefGoogle Scholar
  26. 26.
    Malisetty SK, Rambabu C (2013) Simultaneous determination of aspirin and esomeprazole magnesium in combined tablets by validated UPLC method. Pharm Methods 4:26–29CrossRefGoogle Scholar
  27. 27.
    Wang C, Vickers TJ, Mann CK (1997) Direct assay and shelf-life monitoring of aspirin tablets using Raman spectroscopy. J Pharm Biomed Anal 16:87–94CrossRefGoogle Scholar
  28. 28.
    Goyal RN, Bishnoi S, Agrawal B (2011) Electrochemical sensor for the simultaneous determination of caffeine and aspirin in human urine samples. J Electroanal Chem 655:97–102CrossRefGoogle Scholar
  29. 29.
    Kokot Z, Burda K (1998) Simultaneous determination of salicylic acid and acetylsalicylic acid in aspirin delayed-release tablet formulations by second-derivative UV spectrophotometry. J Pharm Biomed Anal 18:871–875CrossRefGoogle Scholar
  30. 30.
    Ge SG, Zhang CC, Zhu YN, Yu JH, Zhang SS (2010) BSA activated CdTe quantum dot nanosensor for antimony ion detection. Analyst 135:111–115CrossRefGoogle Scholar
  31. 31.
    Sharma OP, Bhat TK, Singh B (1998) Thin-layer chromatography of gallic acid, methyl gallate, pyrogallol, phloroglucinol, catechol, resorcinol, hydroquinone, catechin, epicatechin, cinnamic acid, p-coumaric acid, ferulic acid and tannic acid. J Chromatogr A 822:167–171CrossRefGoogle Scholar
  32. 32.
    Liu HL, Liu DR, Fang GZ, Liu FF, Liu CC, Yang YK, Wang S (2013) A novel dual-function molecularly imprinted polymer on CdTe/ZnS quantum dots for highly selective and sensitive determination of ractopamine. Anal Chim Acta 762:76–82CrossRefGoogle Scholar
  33. 33.
    Liu CB, Song ZL, Pan JM, Yan YS, Cao ZJ, Wei X, Gao L, Wang J, Dai JD, Meng MJ, Yu P (2014) A simple and sensitive surface molecularly imprinted polymers based fluorescence sensor for detection of λ-Cyhalothrin. Talanta 125:14–23CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Xiao Wei
    • 1
  • Zhiping Zhou
    • 1
  • Tongfan Hao
    • 1
  • Yeqing Xu
    • 2
  • Hongji Li
    • 2
  • Kai Lu
    • 1
  • Jiangdong Dai
    • 1
  • Xudong Zheng
    • 2
  • Lin Gao
    • 2
  • Jixiang Wang
    • 2
  • Yongsheng Yan
    • 2
    Email author
  • Yanzhuo Zhu
    • 3
  1. 1.School of Material Science and EngineeringJiangsu UniversityZhenjiangChina
  2. 2.School of Chemistry and Chemical EngineeringJiangsu UniversityZhenjiangPeople’s Republic of China
  3. 3.School of ChemistryJilin Normal UniversitySipingChina

Personalised recommendations