Advertisement

Microchimica Acta

, Volume 182, Issue 7–8, pp 1353–1360 | Cite as

A sensitive and selective fluorescence assay for metallothioneins by exploiting the surface energy transfer between rhodamine 6G and gold nanoparticles

  • Yu-Qian Yan
  • Xian Tang
  • Yong-Sheng WangEmail author
  • Ming-Hui Li
  • Jin-Xiu Cao
  • Si-Han Chen
  • Yu-Feng Zhu
  • Xiao-Feng Wang
  • Yan-Qin Huang
Original Paper

Abstract

We report on a sensitive and selective strategy for the determination of metallothioneins (MTs). The assay is based on the suppression of the surface energy transfer that occurs between rhodamine 6G (Rh6G) and gold nanoparticles (AuNPs). If Rh6G is adsorbed onto the surface of AuNPs in water solution of pH 3.0, its fluorescence is quenched due to surface energy transfer. However, on addition of MTs to the Rh6G-AuNPs system, fluorescence is recovered owing to the formation of the MTs-AuNPs complex and the release of Rh6G into the solution. Under optimized conditions, the increase in fluorescence intensity is directly proportional to the concentration of the MTs in the range from 9.68 to 500 ng mL−1, with a detection limit as low as 2.9 ng mL−1. The possible mechanism of this assay is discussed. The method was successfully applied to the determination of MTs in (spiked) human urine.

Graphical Abstract

Gold nanoparticles can quench the fluorescence of rhodamine 6G by surface energy transfer. The addition of metallothioneins to the solution results in the recovery of the fluorescence of the system owing to the release of rhodamine 6G from the surface of the gold nanoparticles.

Keywords

Nanomaterial Gold nanoparticles Surface energy transfer Fluorescence spectroscopy Rhodamine 6G Metallothioneins Metalloprotein 

Notes

Acknowledgments

The authors gratefully acknowledge the support of the National Natural Science Foundation of China (No. 21177052), the Science and Technology Program of Hunan Province in China (No. 2010SK3039) and the Construct Program of the Key Discipline (Public Health and Preventive Medicine) in Hunan Province.

Supplementary material

604_2015_1457_MOESM1_ESM.doc (734 kb)
ESM 1 (DOC 733 kb)

References

  1. 1.
    Swindell WR (2011) Metallothionein and the biology of aging. Ageing Res Rev 10:132–145CrossRefGoogle Scholar
  2. 2.
    Cho YS, Lee SY, Kim KY, Bang IC, Kim DS, Nam YK (2008) Gene structure and expression of metallothionein during metal exposures in Hemibarbus mylodon. Ecotoxicol Environ Saf 71:125–137CrossRefGoogle Scholar
  3. 3.
    Rigby KE, Stillman MJ (2004) Structural studies of metal-free metallothionein. Biochem Biophys Res Commun 325:1271–1278CrossRefGoogle Scholar
  4. 4.
    Namdarghanbari M, Wobig W, Krezoski S, Tabatabai NM, Petering DH (2011) Mammalian metallothionein in toxicology, cancer, and cancer chemotherapy. J Biol Inorg Chem 16:1087–1101CrossRefGoogle Scholar
  5. 5.
    Lu J, Jin T, Nordberg G, Nordberg M (2005) Metallothionein gene expression in peripheral lymphocytes and renal dysfunction in a population environmentally exposed to cadmium. Toxicol Appl Pharmacol 206:150–156CrossRefGoogle Scholar
  6. 6.
    Oliveira M, Ahmad I, Maria VL, Serafim A, Bebianno MJ, Pacheco M, Santos MA (2010) Hepatic metallothionein concentrations in the golden grey mullet (Liza aurata) - relationship with environmental metal concentrations in a metal-contaminated coastal system in Portugal. Mar Environ Res 69:227–233CrossRefGoogle Scholar
  7. 7.
    Smaoui-Damak W, Berthet B, Hamza-Chaffai A (2009) In situ potential use of metallothionein as a biomarker of cadmium contamination in Ruditapes decussatus. Ecotoxicol Environ Saf 72:1489–1498CrossRefGoogle Scholar
  8. 8.
    Maity S, Roy S, Bhattacharya S, Chaudhury S (2011) Metallothionein responses in the earthworm lampito mauritii (Kinberg) following lead and zinc exposure: a promising tool for monitoring metal contamination. Eur J Solid Biol 47:69–71CrossRefGoogle Scholar
  9. 9.
    Serafim A, Bebianno MJ (2009) Metallothionein role in the kinetic model of copper accumulation and elimination in the clam Ruditapes decussatus. Environ Res 109:390–399CrossRefGoogle Scholar
  10. 10.
    Adam V, Petrlova J, Wang J, Eckschlager T, Trnkova L, Kizek R (2010) Zeptomole electrochemical detection of metallothioneins. PLoS ONE 5:e11441CrossRefGoogle Scholar
  11. 11.
    Boutet I, Tanguy A, Auffret M, Riso R, Moraga D (2002) Immunochemical quantification of metallothioneins in marine mollusks: characterization of a metal exposure bioindicator. Environ Toxicol Chem 21:1009–1014CrossRefGoogle Scholar
  12. 12.
    Chassaigne H, Łobinski R (1999) Detection of artefacts and peak identification in reversed-phase HPLC of metallothioneins by electrospray mass spectrometry. Talanta 48:109–118CrossRefGoogle Scholar
  13. 13.
    Mounicou S, Ouerdane L, L’Azou B, Passagne I, Ohayon-Courtès C, Szpunar J, Lobinski R (2010) Identification of metallothionein subisoforms in HPLC using accurate mass and online sequencing by electrospray hybrid linear ion trap-orbital ion trap mass spectrometry. Anal Chem 82:6947–6957CrossRefGoogle Scholar
  14. 14.
    Darbha GK, Ray A, Ray PC (2007) Gold nanoparticle-based miniaturized nanomaterial surface energy transfer probe for rapid and ultrasensitive detection of mercury in soil, water, and fish. ACS Nano 1:208–214CrossRefGoogle Scholar
  15. 15.
    Farzampour L, Amjadi M (2014) Sensitive turn-on fluorescence assay of methimazole based on the fluorescence resonance energy transfer between acridine orange and silver nanoparticles. J Lumin 155:226–230CrossRefGoogle Scholar
  16. 16.
    Zheng AF, Chen JL, Wu GN, Wei HP, He CY, Kai XM, Wu GH, Chen Y (2009) Optimization of a sensitive method for the “switch-on” determination of mercury(II) in waters using Rhodamine B capped gold nanoparticles as a fluorescence sensor. Microchim Acta 16:17–27CrossRefGoogle Scholar
  17. 17.
    Wang YQ, Liu Y, He XW, Li WY, Zhang YK (2012) Highly sensitive synchronous fluorescence determination of mercury (II) based on the denatured ovalbumin coated CdTe QDs. Talanta 99:69–74CrossRefGoogle Scholar
  18. 18.
    Alizadeh N, Farokhcheh A (2014) Simultaneous determination of diphenylamine and nitrosodiphenylamine by photochemically induced fluorescence and synchronous fluorimetry using double scans method. Talanta 121:239–246CrossRefGoogle Scholar
  19. 19.
    Li Q, Song J, Wu FY, Wan YQ (2014) Thiol reactive probe based on fluorescence resonance energy transfer between fluorescein and Au nanoparticles. Acta Chim Slov 61:73–79Google Scholar
  20. 20.
    Zhou B, Wang YS, Yang HX, Xue JH, Wang JC, Liu SD, Liu H, Zhao H (2014) A sensitive resonance light scattering assay for uranyl ion based on the conformational change of a nuclease-resistant aptamer and gold nanoparticles acting as signal reporters. Microchim Acta 181:1353–1360CrossRefGoogle Scholar
  21. 21.
    Qian QM, Wang YS, Yang HX, Xue JH, Liu L, Zhou B, Wang JC, Yin JC, Wang YS (2013) Colorimetric detection of metallothioneins using a thymine-rich oligonucleotide-Hg complex and gold nanoparticles. Anal Biochem 436:45–52CrossRefGoogle Scholar
  22. 22.
    Cao X, Shen F, Zhang M, Guo J, Luo Y, Xu J, Li Y, Sun C (2014) Highly sensitive detection of melamine based on fluorescence resonance energy transfer between rhodamine B and gold nanoparticles. Dyes Pigments 111:99–107CrossRefGoogle Scholar
  23. 23.
    Kang RH, Wang YS, Yang HM, Li GR, Tan X, Xue JH, Zhang JQ, Yuan YK, Shi LF, Xiao XL (2010) Rapid simultaneous analysis of 1-hydroxypyrene, 2-hydroxyfluorene, 9-hydroxyphenanthrene, 1- and 2-naphthol in urine by first derivative synchronous fluorescence spectrometry using Tween-20 as a sensitizer. Anal Chim Acta 658:180–186CrossRefGoogle Scholar
  24. 24.
    Sun H, Li X, Li Y, Fan L, Kraatz HB (2013) A novel colorimetric potassium sensor based on the substitution of lead from G-quadruplex. Analyst 138:856–862CrossRefGoogle Scholar
  25. 25.
    Petrlova J, Potesil D, Mikelova R, Blastik O, Adam V, Trnkova L, Jelen F, Prusa R, Kukacka J, Kizek R (2006) Attomole voltammetric determination of metallothionein. Electrochim Acta 51:5112–5119CrossRefGoogle Scholar
  26. 26.
    Nostelbacher K, Kirchgessner M, Stangl GI (2000) Separation and quantitation of metallothionein isoforms from liver of untreated rats by ion-exchange high-performance liquid chromatography and atomic absorption spectrometry. J Chromatogr B 744:273–282CrossRefGoogle Scholar
  27. 27.
    Liu L, Li Q, Xue JH, Zhou B, Wang YS (2012) Determination of metallothioneins by ultraviolet spectrophotometry with ciprofloxacin-Cu complex. Appl Chem Ind 41:507–509Google Scholar
  28. 28.
    Liu L, Wang YS, Xue JH, Yang HX, Li Q, Zhou B, Wang JC, Yin JC, Wang YS, Xiao XL (2013) Determination of metallothioneins by fluorescence and resonance light scattering strategies based on ciprofloxacin–Cu(II) system. J Lumin 138:251–257CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Yu-Qian Yan
    • 1
  • Xian Tang
    • 1
  • Yong-Sheng Wang
    • 1
    Email author
  • Ming-Hui Li
    • 1
  • Jin-Xiu Cao
    • 1
  • Si-Han Chen
    • 1
  • Yu-Feng Zhu
    • 1
  • Xiao-Feng Wang
    • 1
  • Yan-Qin Huang
    • 1
  1. 1.College of Public HealthUniversity of South ChinaHengyangPeople’s Republic of China

Personalised recommendations