Advertisement

Microchimica Acta

, Volume 182, Issue 7–8, pp 1329–1335 | Cite as

A regenerable piezoelectric immunosensor on the basis of electropolymerized polypyrrole for highly selective detection of Staphylococcal Enterotoxin A in foodstuffs

  • Nadezhda KarasevaEmail author
  • Tatyana Ermolaeva
Original Paper

Abstract

Piezoelectric immunosensors have been developed for the determination of trace concentrations of Staphylococcal enterotoxin A (SEA) in foodstuff. Antibodies against SEA were covalently immobilized on an electropolymerized polypyrrole substrate on a gold electrode which warrants increased stability of the biolayer and sensitive detection. The calibration plot is linear in the 1–80 ng∙mL‾1 SEA concentration range, the limit of detection is 0.4 ng∙mL‾1, and the time of analysis is <30 min. The sensor was successfully applied to quantify SEA in chicken meat and milk.

Graphical Abstract

A piezoelectric immunosensor was developed for detection of trace concentrations of Staphylococcal enterotoxin A in meat and milk.

Keywords

Piezoelectric immunosensor Antibodies Immobilization Staphylococcal enterotoxin A Polypyrrole 

References

  1. 1.
    Sospedra I, Soler C, Manes J, Soriano JM (2012) Rapid whole protein quantitation of staphylococcal enterotoxins A and B by liquid chromatography/mass spectrometry. J Chromatogr A 1238:54–59CrossRefGoogle Scholar
  2. 2.
    Kuang H, Wang W, Xu L, Ma W, Liu L, Wang L, Xu C (2013) Monoclonal antibody-based sandwich ELISA for the detection of staphylococcal enterotoxin A. Int J Environ Res Public Health 10(4):1598–1608CrossRefGoogle Scholar
  3. 3.
    Rahimi E, Mommtaz H, Shakerian A, Kavyani HR (2012) The detection of classical enterotoxins of Staphylococcus aureus in raw cow milk using the ELISA method. Turk J Vet Anim Sci 36(3):319–322Google Scholar
  4. 4.
    Techer C, Salmain M, Tranquet O, Echasserieau V, Le Moigne V, Hennekinne JA, Gautier M, Val F (2013) Detection and quantification of staphylococcal enterotoxin A in foods with specific and sensitive polyclonal antibodies. Food Control 32(1):255–261CrossRefGoogle Scholar
  5. 5.
    Medina MB (2006) A biosensor method for detection of staphylococcal enterotoxin A in raw whole egg. J Rapid Methods Autom Microbiol 14:119–132CrossRefGoogle Scholar
  6. 6.
    Ermolaeva TN, Kalmykova EN (2006) Piezoelectric immunosensors: analytical potentials and outlooks. Russ Chem Rev 75(5):397–409CrossRefGoogle Scholar
  7. 7.
    Tsai W-C, Li I-C (2009) SPR-based immunosensor for determining staphylococcal enterotoxin A. Sensors Actuators B 136:8–12CrossRefGoogle Scholar
  8. 8.
    Salmaina M, Ghasemia M, Boujdayc S, Spadavecchiac J, Techere C, Valf F, Le Moignee V, Gautiere M, Briandetg R, Pradierc C-M (2011) Piezoelectric immunosensor for direct and rapid detection of staphylococcal enterotoxin A (SEA) at the ng level. Biosens Bioelectron 29:140–144CrossRefGoogle Scholar
  9. 9.
    Salmaina M, Ghasemia M, Boujdayc S, Pradier CM (2012) Elaboration of a reusable immunosensor for the detection of staphylococcal enterotoxin A (SEA) in milk with a quartz crystal microbalance. Sensors Actuators 173:148–156CrossRefGoogle Scholar
  10. 10.
    Pimenta-Martins MGR, Furtado RF, Heneine LGD, Dias RS, de Fátima Borges M, Alves CR (2012) Development of an amperometric immunosensor for detection of staphylococcal enterotoxin type A in cheese. J Microbiol Methods 91:138–143CrossRefGoogle Scholar
  11. 11.
    Karaseva NA, Ermolaeva TN (2012) A piezoelectric immunosensor for chloramphenicol detection. Talanta 93:44–48CrossRefGoogle Scholar
  12. 12.
    Melihova EV, Kalmykova EN, Eremin SA, Ermolaeva TN (2006) Using a piezoelectric flow immunosensors for determining sulfamethoxazole in environmental samples. J Anal Chem 61(7):744–750Google Scholar
  13. 13.
    Buck RP, Lindner E, Kutner W, Inzelt G (2004) Piezoelectric chemical sensors (IUPAC Technical Report). Pure Appl Chem 76(6):1139–1160CrossRefGoogle Scholar
  14. 14.
    Karaseva NA, Ermolaeva TN (2014) Piezoelectric immunosensors for the detection of individual antibiotics and the total content of penicillin antibiotics in foodstuffs. Talanta 120:312–317CrossRefGoogle Scholar
  15. 15.
    Huang ZB, Yin GF, Liao XM, Gu JW (2014) Conducting polypyrrole in tissue engineering applications. Front Mater Sci 8(1):39–45CrossRefGoogle Scholar
  16. 16.
    Skládal P (2003) Piezoelectric quartz crystal sensors applied for bioanalytical assays and characterization of affinity interactions. J Braz Chem Soc 14(4):491–502CrossRefGoogle Scholar
  17. 17.
    Ramanaviciusa A, Oztekina Y, Ramanavicienea A (2014) Electrochemical formation of polypyrrole-based layer for immunosensor design. Sensors Actuators B 197:237–243CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  1. 1.Lipetsk State Technical UniversityLipetskRussia

Personalised recommendations