Advertisement

Microchimica Acta

, Volume 182, Issue 7–8, pp 1255–1261 | Cite as

Microwave-assisted synthesis of BSA-modified silver nanoparticles as a selective fluorescent probe for detection and cellular imaging of cadmium(II)

  • Yu Gu
  • Nan Li
  • Mengmeng Gao
  • Zilu Wang
  • Deli Xiao
  • Yun Li
  • Huning JiaEmail author
  • Hua HeEmail author
Original Paper

Abstract

We have developed a microwave-assisted method for the synthesis of silver nanoparticles (AgNPs) whose surface is modified with bovine serum albumin (BSA). The reaction involves reduction of the BSA-Ag(I) complex by tyrosine in strongly alkaline solution to form BSA-AgNPs. The reaction takes a few minutes only owing to rapid and uniform microwave heating. The modified AgNPs were characterized by UV–vis and fluorescence spectroscopy, transmission electron microscopy and X- ray photoelectron spectroscopy. The BSA-AgNPs are yellow and display luminescence with a maximum at 521 nm if excited at 465 nm. They have a hydrodynamic diameter of 3–5 nm and possess good colloidal stability in the pH 4.6 to 12.0 range. The fluorescence of the BSA-AgNPs is enhanced by Cd(II) ion due to the formation of a stable hybrid conjugate referred to as Cd@BSA-AgNPs. The effect was exploited to quantify Cd(II) in spiked real water samples with a 4.7 nM detection limit, and also to fluorescently image Cd(II) in Hepatoma cells.

Graphical Abstract

A conjugate of the type BSA-AgNPs was prepared by reduction of Ag(I) ion in the presence of bovine serum albumin. Its fluorescence was found to be enhanced on addition of Cd(II) ions. The effect was exploited to determine Cd(II) in water samples and to fluorescently image Cd(II) in hepatoma cells.

Keywords

Fluorescence Fluorescent probe Silver nanoparticle BSA Microwave synthesis 

Notes

Acknowledgments

This work was financially supported by The Research and Innovation Project for Graduate Students Academic Degree of Colleges and Universities of Jiangsu Province (KYLX_0618), National Found for Fostering Talents of Basic Science (NFFTBS)-Provincial Innovation and Entrepreneurship Training Program for College Students (No.J1030830). We are delighted to acknowledge discussions with colleagues in our research group.

Supplementary material

604_2014_1438_MOESM1_ESM.docx (207 kb)
ESM 1 (DOCX 206 kb)

References

  1. 1.
    Alghasham A, Salem TA, Meki AR (2013) Effect of cadmium-polluted water on plasma levels of tumor necrosis factor-alpha, interleukin-6 and oxidative status biomarkers in rats: protective effect of curcumin. Food Chem Toxicol 59:160–164. doi: 10.1016/j.fct.2013.05.059 CrossRefGoogle Scholar
  2. 2.
    Chakraborty S, Dutta AR, Sural S, Gupta D, Sen S (2013) Ailing bones and failing kidneys: a case of chronic cadmium toxicity. Ann Clin Biochem 50(5):492–495. doi: 10.1177/0004563213481207 CrossRefGoogle Scholar
  3. 3.
    Nava-Ruíz C, Méndez-Armenta M, (2013) Cadmium, lead, thallium: occurrence, neurotoxicity and histopathological changes of the nervous system. In: Pollutant diseases, remediation and recycling. Springer, pp 321–349. doi:10.1007/978-3-319-02387-8_6Google Scholar
  4. 4.
    Vergauwen L, Hagenaars A, Blust R, Knapen D (2013) Temperature dependence of long-term cadmium toxicity in the zebrafish is not explained by liver oxidative stress: evidence from transcript expression to physiology. Aquat Toxicol 126:52–62. doi: 10.1016/j.aquatox.2012.10.004 CrossRefGoogle Scholar
  5. 5.
    Nancy MA, DaLp C, Adela BB, Bermejo-Barrera P (2003) Use of Amberlite XAD-2 loaded with 1-(2-pyridylazo)-2-naphthol as a preconcentration system for river water prior to determination of Cu 2+, Cd 2+ and Pb 2+ by flame atomic absorption spectroscopy. Microchim Acta 142(1–2):101–108. doi: 10.1007/s00604-003-0022-4 CrossRefGoogle Scholar
  6. 6.
    Bakkaus E, Collins RN, Morel JL, Gouget B (2006) Anion exchange liquid chromatography–inductively coupled plasma-mass spectrometry detection of the Co2+, Cu2+, Fe3+ and Ni2+ complexes of mugineic and deoxymugineic acid. J Chromatogr A 1129(2):208–215. doi: 10.1016/j.chroma.2006.07.004 CrossRefGoogle Scholar
  7. 7.
    Zhao L, Zhong S, Fang K, Qian Z, Chen J (2012) Determination of cadmium (II), cobalt(II), nickel(II), lead(II), zinc(II), and copper(II) in water samples using dual-cloud point extraction and inductively coupled plasma emission spectrometry. J Hazard Mater 239–240:206–212. doi: 10.1016/j.jhazmat.2012.08.066 CrossRefGoogle Scholar
  8. 8.
    Liu Z, Zhang C, He W, Yang Z, Gao X, Guo Z (2010) A highly sensitive ratiometric fluorescent probe for Cd2+ detection in aqueous solution and living cells. Chem Commun 46(33):6138–6140. doi: 10.1039/C0CC00662A CrossRefGoogle Scholar
  9. 9.
    Peng X, Du J, Fan J, Wang J, Wu Y, Zhao J, Sun S, Xu T (2007) A selective fluorescent sensor for imaging Cd2+ in living cells. J Am Chem Soc 129(6):1500–1501. doi: 10.1021/ja0643319 CrossRefGoogle Scholar
  10. 10.
    Xu H, Miao R, Fang Z, Zhong X (2011) Quantum dot-based “turn-on” fluorescent probe for detection of zinc and cadmium ions in aqueous media. Anal Chim Acta 687(1):82–88. doi: 10.1016/j.aca.2010.12.002 CrossRefGoogle Scholar
  11. 11.
    Liu C, Li B, Xu C (2014) Colorimetric chiral discrimination and determination of enantiometric excess of D/L-tryptophan using silver nanoparticles. Microchim Acta. doi: 10.1007/s00604-014-1281-y Google Scholar
  12. 12.
    Perez-Lopez B, Merkoci A (2011) Nanoparticles for the development of improved (bio)sensing systems. Anal Bioanal Chem 399(4):1577–1590. doi: 10.1007/s00216-010-4566-y CrossRefGoogle Scholar
  13. 13.
    Xu X, Wang J, Yang F, Jiao K, Yang X (2009) Label-free colorimetric detection of small molecules utilizing DNA oligonucleotides and silver nanoparticles. Small 5(23):2669–2672. doi: 10.1002/smll.200901164 CrossRefGoogle Scholar
  14. 14.
    Lin Y, Chen C, Wang C, Pu F, Ren J, Qu X (2011) Silver nanoprobe for sensitive and selective colorimetric detection of dopamine via robust Ag-catechol interaction. Chem Commun (Camb) 47(4):1181–1183. doi: 10.1039/c0cc03700a CrossRefGoogle Scholar
  15. 15.
    Chen S, Gao H, Shen W, Lu C, Yuan Q (2014) Colorimetric detection of cysteine using noncrosslinking aggregation of fluorosurfactant-capped silver nanoparticles. Sens Actuat B- Chem 190:673–678. doi: 10.1016/j.snb.2013.09.036 CrossRefGoogle Scholar
  16. 16.
    Yuan Z, Peng M, He Y, Yeung ES (2011) Functionalized fluorescent gold nanodots: synthesis and application for Pb2+ sensing. Chem Commun (Camb) 47(43):11981–11983. doi: 10.1039/c1cc14872a CrossRefGoogle Scholar
  17. 17.
    Miao P, Liu T, Li X, Ning L, Yin J, Han K (2013) Highly sensitive, label-free colorimetric assay of trypsin using silver nanoparticles. Biosens Bioelectron 49:20–24. doi: 10.1016/j.bios.2013.04.038 CrossRefGoogle Scholar
  18. 18.
    Chen X, Cheng X, Gooding JJ (2012) Detection of trace nitroaromatic isomers using indium tin oxide electrodes modified using beta-cyclodextrin and silver nanoparticles. Anal Chem 84(20):8557–8563. doi: 10.1021/ac3014675 CrossRefGoogle Scholar
  19. 19.
    Zhang M, Ye BC (2011) Colorimetric chiral recognition of enantiomers using the nucleotide-capped silver nanoparticles. Anal Chem 83(5):1504–1509. doi: 10.1021/ac102922f CrossRefGoogle Scholar
  20. 20.
    Chen X, Parker SG, Zou G, Su W, Zhang Q (2010) β-Cyclodextrin-functionalized silver nanoparticles for the naked eye detection of aromatic isomers. ACS Nano 4(11):6387–6394. doi: 10.1021/nn1016605 CrossRefGoogle Scholar
  21. 21.
    Wu X, Tang W, Hou C, Zhang C, Zhu N (2014) Colorimetric and bare-eye detection of alkaline earth metal ions based on the aggregation of silver nanoparticles functionalized with thioglycolic acid. Microchim Acta 181(9–10):991–998. doi: 10.1007/s00604-014-1185-x CrossRefGoogle Scholar
  22. 22.
    Shang Y, Wu F, Qi L (2012) Highly selective colorimetric assay for nickel ion using N-acetyl-l-cysteine-functionalized silver nanoparticles. J Nanopart Res 14(10):1–7. doi: 10.1007/s11051-012-1169-x CrossRefGoogle Scholar
  23. 23.
    Pal J, Deb MK, Deshmukh DK (2013) Microwave-assisted synthesis of silver nanoparticles using benzo-18-crown-6 as reducing and stabilizing agent. Appl Nanosci 4(4):507–510. doi: 10.1007/s13204-013-0229-6 CrossRefGoogle Scholar
  24. 24.
    Kahrilas GA, Haggren W, Read RL, Wally LM, Fredrick SJ, Hiskey M, Prieto AL, Owens JE (2014) Investigation of antibacterial activity by silver nanoparticles prepared by microwave-assisted green syntheses with soluble starch, dextrose, and arabinose. ACS Sustain Chem Eng 2(4):590–598. doi: 10.1021/sc400487x CrossRefGoogle Scholar
  25. 25.
    Nguyen T-H, Lee K-H, Lee B-T (2010) Fabrication of Ag nanoparticles dispersed in PVA nanowire mats by microwave irradiation and electro-spinning. Mat Sci Eng C 30(7):944–950. doi: 10.1016/j.msec.2010.04.012 CrossRefGoogle Scholar
  26. 26.
    Guo C, Irudayaraj J (2011) Fluorescent Ag clusters via a protein-directed approach as a Hg(II) ion sensor. Anal Chem 83(8):2883–2889. doi: 10.1021/ac1032403 CrossRefGoogle Scholar
  27. 27.
    Aslan K, Geddes CD (2005) Microwave-accelerated metal-enhanced fluorescence: platform technology for ultrafast and ultrabright assays. Anal Chem 77(24):8057–8067. doi: 10.1021/ac0516077 CrossRefGoogle Scholar
  28. 28.
    Baghbanzadeh M, Carbone L, Cozzoli PD, Kappe CO (2011) Microwave‐assisted synthesis of colloidal inorganic nanocrystals. Angew Chem Int Edit 50(48):11312–11359. doi: 10.1002/anie.201101274 CrossRefGoogle Scholar
  29. 29.
    Yuan X, Luo Z, Yu Y, Yao Q, Xie J (2013) Luminescent noble metal nanoclusters as an emerging optical probe for sensor development. Chem Asian J 8(5):858–871. doi: 10.1002/asia.201201236 CrossRefGoogle Scholar
  30. 30.
    Wang S, Meng X, Das A, Li T, Song Y, Cao T, Zhu X, Zhu M, Jin R (2014) A 200‐fold quantum yield boost in the photoluminescence of silver‐doped AgxAu25− x nanoclusters: the 13 th silver atom matters. Angew Chem Int Edit 53(9):2376–2380CrossRefGoogle Scholar
  31. 31.
    Li H-W, Yue Y, Liu T-Y, Li D, Wu Y (2013) Fluorescence-enhanced sensing mechanism of BSA-protected small gold-nanoclusters to silver(I) ions in aqueous solutions. J Phys Chem C 117(31):16159–16165. doi: 10.1021/jp403466b CrossRefGoogle Scholar
  32. 32.
    Xu Y, Xiao L, Sun S, Pei Z, Pei Y, Pang Y (2014) Switchable and selective detection of Zn2+ or Cd2+ in living cells based on 3′-O-substituted arrangement of benzoxazole-derived fluorescent probes. Chem Commun (Camb) 50(56):7514–7516. doi: 10.1039/c4cc02335h CrossRefGoogle Scholar
  33. 33.
    Yang LL, Liu XM, Liu K, Liu H, Zhao FY, Ruan WJ, Li Y, Chang Z, Bu XH (2014) A polypyridyl-pyrene based off-on Cd(2+) fluorescent sensor for aqueous phase analysis and living cell imaging. Talanta 128:278–283. doi: 10.1016/j.talanta.2014.04.046 CrossRefGoogle Scholar
  34. 34.
    Xue L, Liu Q, Jiang H (2009) Ratiometric Zn2+ fluorescent sensor and New approach for sensing Cd2+ by ratiometric displacement. Org Lett 11(15):3454–3457CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  1. 1.Division of Analytical ChemistryChina Pharmaceutical UniversityNanjingChina
  2. 2.Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical UniversityMinistry of EducationNanjingChina

Personalised recommendations