Advertisement

Microchimica Acta

, Volume 182, Issue 5–6, pp 985–993 | Cite as

Profiling of oxygen in biofilms using individually addressable disk microelectrodes on a microfabricated needle

  • Ana Moya
  • Xavier Guimerà
  • Francisco Javier del Campo
  • Elisabet Prats-Alfonso
  • Antonio David Dorado
  • Mireia Baeza
  • Rosa Villa
  • David Gabriel
  • Xavier Gamisans
  • Gemma Gabriel
Original Paper

Abstract

A novel microelectrode array sensor was fabricated using MEMS technology on a needle, and then applied to real-time measurement of dissolved oxygen (DO) inside biofilms. The sensor consists of eleven gold disk microelectrodes, a rectangular auxiliary electrode along them, and an external and internal reference electrode. Three kinds of sensors were designed and their responses were characterized and evaluated under various conditions. The arrays exhibit a linear response to DO in the 0–8 mg·L−1 concentration range in water, high sensitivity, repeatability, and low limits of detection (<0.11 mg·L−1 of DO) and quantification (0.38 mg·L−1 DO). The sensors were validated against a commercial Clark-type microelectrode and applied to profiling of DO in a heterotrophic biofilm cultivated in a flat-plate bioreactor. It is shown that the sensor array can provide a multipoint, simultaneous snapshot profile of DO inside a biofilm with high spatial resolution due to its micrometric dimensions. We conclude that this new sensor array represents a powerful tool for sensing of DO biofilms and in numerous bioprocesses.

Graphical Abstract

A microelectrode array sensor for real-time measurement of dissolved oxygen (DO) is presented for use in  multipoint and simultaneous snapshot profiling of DO in a biofilm. The sensor has been validated against a commercial Clark-type.

Keywords

Dissolved oxygen Microelectrode array Sensors Bioprocess monitoring Biofilms 

Notes

Acknowledgments

This work has been founded by projects DPI2011-28262-C04 and CTM2012-37927-C03/FEDER, financed by the Ministerio de Economía y Competitividad (Spain). AM gratefully acknowledges an FPI-2012 pre-doctoral scholarship, (it funded her PhD studies at Universitat Autònoma de Barcelona), and XG also acknowledges an FPI-UPC pre-doctoral scholarship, both from Ministerio de Economía y Competitividad (Spain).

Supplementary material

604_2014_1405_MOESM1_ESM.docx (380 kb)
ESM 1 (DOCX 379 kb)

References

  1. 1.
    Cohen Y (2001) Biofiltration - the treatment of fluids by microorganisms immobilized into the filter bedding material: a review. Bioresour Technol 77:257–274. doi: 10.1016/S0960-8524(00)00074-2 CrossRefGoogle Scholar
  2. 2.
    Gavrilescu M, Macoveanu M (2000) Attached-growth process engineering in wastewater treatment. Bioprocess Eng 23:95–106CrossRefGoogle Scholar
  3. 3.
    Okabe S, Itoh T, Satoh H, Watanabe Y (1999) Analyses of spatial distributions of sulfate-reducing bacteria and their activity in aerobic wastewater biofilms. Appl Environ Microbiol 65:5107–5116Google Scholar
  4. 4.
    Ning Y-F, Chen Y-P, Li S et al (2012) Development of an in situ dissolved oxygen measurement system and calculation of its effective diffusion coefficient in a biofilm. Anal Methods 4:2242. doi: 10.1039/c2ay25132a CrossRefGoogle Scholar
  5. 5.
    Zhou X-H, Liu J, Song H-M et al (2012) Estimation of heterotrophic biokinetic parameters in wastewater biofilms from oxygen concentration profiles by microelectrode. Environ Eng Sci 29:466–471. doi: 10.1089/ees.2010.0456 CrossRefGoogle Scholar
  6. 6.
    Denkhaus E, Meisen S, Telgheder U, Wingender J (2007) Chemical and physical methods for characterisation of biofilms. Microchim Acta 158:1–27. doi: 10.1007/s00604-006-0688-5 CrossRefGoogle Scholar
  7. 7.
    Wang X, Wolfbeis OS (2014) Optical methods for sensing and imaging oxygen: materials, spectroscopies and applications. Chem Soc Rev 43:3666–3761CrossRefGoogle Scholar
  8. 8.
    Clark LC, Wolf R, Granger D, Taylor Z (1953) Continuous recording of blood oxygen tensions by polarography. J Appl Physiol 6:189–193Google Scholar
  9. 9.
    Revsbech NP, Jørgensen BB (1986) Microelectrodes: their use in microbial ecology. In: Marshall KC (ed) Adv Microb Ecol. Springer US, pp 293–352Google Scholar
  10. 10.
    Paliteiro C (1994) (100)-Type behaviour of polycrystalline gold towards O2 reduction. Electrochim Acta 39:1633–1639. doi: 10.1016/0013-4686(94)85147-6 CrossRefGoogle Scholar
  11. 11.
    Jeroschewski P, Steuckart C, Eickert G, Kuhl M (1998) A H2S microsensor for profiling biofilms and sediments: application in an acidic lake sediment. Aquat Microb Ecol 15:201. doi: 10.3354/ame015201 CrossRefGoogle Scholar
  12. 12.
    Hang Gao FS (2011) Aerobic denitrification in permeable Wadden Sea sediments. ISME J 5:776. doi: 10.1038/ismej.2010.166 CrossRefGoogle Scholar
  13. 13.
    Wu C-C, Yasukawa T, Shiku H, Matsue T (2005) Fabrication of miniature Clark oxygen sensor integrated with microstructure. Sens Actuators B Chem 110:342–349. doi: 10.1016/j.snb.2005.02.014 CrossRefGoogle Scholar
  14. 14.
    Carlos de la Rosa TY (2006) Development of an automation system to evaluate the three-dimensional oxygen distribution in wastewater biofilms using microsensors. Sens Actuators B-Chem 113:47–54. doi: 10.1016/j.snb.2005.02.025 CrossRefGoogle Scholar
  15. 15.
    Zhou X-H, Qiu Y-Q, Shi H-C et al (2009) A new approach to quantify spatial distribution of biofilm kinetic parameters by in situ determination of oxygen uptake rate (OUR). Environ Sci Technol 43:757–763. doi: 10.1021/es802373q CrossRefGoogle Scholar
  16. 16.
    Kumar A, Hille-Reichel A, Horn H et al (2012) Oxygen transport within the biofilm matrix of a membrane biofilm reactor treating gaseous toluene. J Chem Technol Biotechnol 87:751–757. doi: 10.1002/jctb.3800 CrossRefGoogle Scholar
  17. 17.
    Lee J-H, Lim T-S, Seo Y et al (2007) Needle-type dissolved oxygen microelectrode array sensors for in situ measurements. Sens Actuators B Chem 128:179–185. doi: 10.1016/j.snb.2007.06.008 CrossRefGoogle Scholar
  18. 18.
    Davies TJ, Ward-Jones S, Banks CE et al (2005) The cyclic and linear sweep voltammetry of regular arrays of microdisc electrodes: fitting of experimental data. J Electroanal Chem 585:51–62. doi: 10.1016/j.jelechem.2005.07.021 CrossRefGoogle Scholar
  19. 19.
    Menshykau D, O’Mahony AM, del Campo FJ et al (2009) Microarrays of ring-recessed disk electrodes in transient generator-collector mode: theory and experiment. Anal Chem 81:9372–9382. doi: 10.1021/ac9017633 CrossRefGoogle Scholar
  20. 20.
    Godino N, Borrisé X, Muñoz FX et al (2009) Mass transport to nanoelectrode arrays and limitations of the diffusion domain approach: theory and experiment. J Phys Chem C 113:11119–11125. doi: 10.1021/jp9031354 CrossRefGoogle Scholar
  21. 21.
    Menshykau D, Cortina-Puig M, del Campo FJ et al (2010) Plane-recessed disk electrodes and their arrays in transient generator–collector mode: the measurement of the rate of the chemical reaction of electrochemically generated species. J Electroanal Chem 648:28–35. doi: 10.1016/j.jelechem.2010.07.003 CrossRefGoogle Scholar
  22. 22.
    Ordeig O, del Campo J, Muñoz FX et al (2007) Electroanalysis utilizing amperometric microdisk electrode arrays. Electroanalysis 19:1973–1986. doi: 10.1002/elan.200703914 CrossRefGoogle Scholar
  23. 23.
    Lanyon YH, Arrigan DWM (2007) Recessed nanoband electrodes fabricated by focused ion beam milling. Sens Actuators B Chem 121:341–347. doi: 10.1016/j.snb.2006.11.029 CrossRefGoogle Scholar
  24. 24.
    Del Campo FJ, Abad L, Illa X et al (2014) Determination of heterogeneous electron transfer rate constants at interdigitated nanoband electrodes fabricated by an optical mix-and-match process. Sens Actuators B Chem 194:86–95. doi: 10.1016/j.snb.2013.12.016 CrossRefGoogle Scholar
  25. 25.
    Laczka O, del Campo FJ, Muñoz-Pascual FX, Baldrich E (2011) Electrochemical detection of testosterone by use of three-dimensional disc-ring microelectrode sensing platforms: application to doping monitoring. Anal Chem 83:4037–4044. doi: 10.1021/ac1031594 CrossRefGoogle Scholar
  26. 26.
    Sánchez-Molas D, Esquivel JP, Sabaté N et al (2012) High aspect-ratio, fully conducting gold micropillar array electrodes: silicon micromachining and electrochemical characterization. J Phys Chem C 116:18831–18846. doi: 10.1021/jp305339k CrossRefGoogle Scholar
  27. 27.
    Prehn R, Abad L, Sánchez-Molas D et al (2011) Microfabrication and characterization of cylinder micropillar array electrodes. J Electroanal Chem 662:361–370. doi: 10.1016/j.jelechem.2011.09.002 CrossRefGoogle Scholar
  28. 28.
    Fischer LM, Tenje M, Heiskanen AR et al (2009) Gold cleaning methods for electrochemical detection applications. Microelectron Eng 86:1282–1285. doi: 10.1016/j.mee.2008.11.045 CrossRefGoogle Scholar
  29. 29.
    Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications. Wiley, New YorkGoogle Scholar
  30. 30.
    Wolff CM, Mottola HA (1978) Enzymic substrate determination in closed flow-through systems by sample injection and amperometric monitoring of dissolved oxygen levels. Anal Chem 50:94–98. doi: 10.1021/ac50023a026 CrossRefGoogle Scholar
  31. 31.
    Lewandowski Z, Beyenal H (2013) Fundamentals of biofilm research, Second Edition. CRC PressGoogle Scholar
  32. 32.
    Dorado AD, Baeza JA, Lafuente J et al (2012) Biomass accumulation in a biofilter treating toluene at high loads – part 1: experimental performance from inoculation to clogging. Chem Eng J 209:661–669. doi: 10.1016/j.cej.2012.08.018 CrossRefGoogle Scholar
  33. 33.
    Del Campo FJ, Ordeig O, Vigués N et al (2007) Continuous measurement of acute toxicity in water using a solid state microrespirometer. Sens Actuators B Chem 126:515–521. doi: 10.1016/j.snb.2007.03.038 CrossRefGoogle Scholar
  34. 34.
    Murphy VG, Barr RE, Hahn AW (1976) Control of electrode aging by a periodic anodization technique. In: Grote J, Reneau D, Thews G (eds) Oxyg Transp Tissue — II. Springer US, pp 69–75Google Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Ana Moya
    • 1
    • 5
  • Xavier Guimerà
    • 2
  • Francisco Javier del Campo
    • 1
  • Elisabet Prats-Alfonso
    • 1
    • 5
  • Antonio David Dorado
    • 2
  • Mireia Baeza
    • 3
  • Rosa Villa
    • 1
    • 5
  • David Gabriel
    • 4
  • Xavier Gamisans
    • 2
  • Gemma Gabriel
    • 1
    • 5
  1. 1.Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Esfera UABCampus Universitat Autònoma de BarcelonaBellaterraSpain
  2. 2.Department of Mining Engineering and Natural ResourcesUniversitat Politècnica de CatalunyaManresaSpain
  3. 3.Department of Chemistry, Facultat de Ciències, Edifici C-NordUniversitat Autònoma de BarcelonaBellaterraSpain
  4. 4.Department of Chemical EngineeringUniversitat Autònoma de Barcelona, EdificiQBellaterraSpain
  5. 5.Biomedical Research Networking Center in BioengineeringBiomaterials and Nanomedicine (CIBER-BBN)ZaragozaSpain

Personalised recommendations