Microchimica Acta

, Volume 182, Issue 1–2, pp 409–417 | Cite as

Aptamer-based electrochemical assay of 17β-estradiol using a glassy carbon electrode modified with copper sulfide nanosheets and gold nanoparticles, and applying enzyme-based signal amplification

  • Ke-Jing HuangEmail author
  • Yu-Jie Liu
  • Ji-Zong Zhang
Original Paper


We have developed an electrochemical method for the determination of 17β-estradiol. A glassy carbon electrode was modified with a composite made from copper sulfide nanosheets, gold nanoparticles, and glucose oxidase. The copper sulfide nanosheet was prepared by a single-step hydrothermal process, and its properties were characterized by X-ray powder diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy. Finally, an estradiol-specific aptamer was assembled on the electrode. The copper sulfide nanosheet on the electrode surface acts as a relatively good electrical conductor. Glucose oxidase acts as an indicator, and the dual modification of glucose oxidase and gold nanoparticles for signal amplification. The determination of 17β-estradiol was performed by differential pulse voltammetry of glucose oxidase because the signal measured at typically −0.43 V depends on the concentration of 17β-estradiol because addition of 17β-estradiol at electrode hinders electron transfer. A linear relationship exists between the peak current and the logarithm of concentration of 17β-estradiol in the 0.5 pM to 5 nM range, with a 60 f. detection limit (at 3σ/S). The method displays good selectivity over bisphenol A, 1-aminoanthraquinone and naphthalene even if present in 100-fold concentrations.

Graphical Abstract

We present an electrochemical method for the determination of 17β-estradiol, using a glassy carbon electrode modified with copper sulfide nanosheets, gold nanoparticles and glucose oxidase as an indicator. The method displays good selectivity over bisphenol A, 1-aminoanthraquinone and naphthalene even if present in 100-fold concentrations.


Copper sulfide nanosheet Au nanoparticles 17β-estradiol Glucose oxidase Signal amplification 



This work was supported by the National Natural Science Foundation of China (U1304214) and the State Key Laboratory of Chemo/biosensing and Chemometrics (No.2013013).

Supplementary material

604_2014_1352_MOESM1_ESM.pdf (33 kb)
ESM 1 (PDF 33.3 kb)


  1. 1.
    Stanczyk FZ, Archer DF, Bhavnani BR (2013) Ethinyl estradiol and 17β-estradiol in combined oral contraceptives: pharmacokinetics, pharmacodynamics and risk assessment. Contraception 87:706CrossRefGoogle Scholar
  2. 2.
    Yang GG, Kookana RS, Ru YJ (2002) Occurrence and fate of hormone steroids in the environment. Environ Int 28:545CrossRefGoogle Scholar
  3. 3.
    Noppe H, Bizec BL, Verheyden K, Brabander D (2008) Novel analytical methods for the determination of steroid hormones in edible matrices. Anal Chim Acta 611:1CrossRefGoogle Scholar
  4. 4.
    Volkmar H, Bjoern T, Einhard K, Hartmut P, Torsen R (2002) Endocrine disrupting nonylphenols are ubiquitous in food. Environ Sci Technol 36:1676CrossRefGoogle Scholar
  5. 5.
    Huy GD, Jin N, Yin BC, Ye BC (2011) A novel separation and enrichment method of 17beta-estradiol using aptamer-anchored microbeads. Bioprocess Biosyst Eng 34:189CrossRefGoogle Scholar
  6. 6.
    Zhu ZH, Qu LN, Niu QJ, Zeng Y, Sun W, Huang XT (2011) Urchinlike MnO2 nanoparticles for the direct electrochemistry of hemoglobin with carbon ionic liquid electrode. Biosens Bioelectron 26:2119CrossRefGoogle Scholar
  7. 7.
    Zhu ZH, Li X, Zeng Y, Sun W (2010) Ordered mesoporous carbon modified carbon ionic liquid electrode for the electrochemical detection of double-stranded DNA. Biosens Bioelectron 25:2313CrossRefGoogle Scholar
  8. 8.
    Jayasena SD (1999) Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin Chem 45:1628Google Scholar
  9. 9.
    Xue F, Wu JJ, Chu HQ, Mei ZL, Ye YK, Liu J, Zhang R, Peng CF, Zheng L, Chen W (2013) Electrochemical aptasensor for the determination of bisphenol a in drinking water. Microchim Acta 180:109–115CrossRefGoogle Scholar
  10. 10.
    Ocaña C, Valle MD (2014) A comparison of four protocols for the immobilization of an aptamer on graphite composite electrodes. Microchim Acta 181:355–363CrossRefGoogle Scholar
  11. 11.
    Pan GX, Xia XH, Cao F, Tang PS, Chen HF (2013) Fabrication of porous Co/NiO core/shell nanowire arrays for electrochemical capacitor application. Electrochem Commun 34:146CrossRefGoogle Scholar
  12. 12.
    Li Q, Anderson JM, Chen YQ, Zha L (2012) Structural evolution of multi-walled carbon nanotube/MnO2 composites as supercapacitor electrodes. Electrochim Acta 59:548CrossRefGoogle Scholar
  13. 13.
    Wang GX, Bao WJ, Wang J, Lu QQ, Xia XH (2013) Immobilization and catalytic activity of horseradish peroxidase on molybdenum disulfide nanosheets modified electrode. Electrochem Commun 35:146CrossRefGoogle Scholar
  14. 14.
    Feng QL, Duan KY, Ye XL, Lu DB, Du YL, Wang CM (2014) A novel way for detection of eugenol via poly(diallyldimethylammonium chloride) functionalized graphene-MoS2 nano-flower fabricated electrochemical sensor. Sens Actuat B 192:1CrossRefGoogle Scholar
  15. 15.
    Song HY, Ni YN, Kokot S (2014) Investigations of an electrochemical platform based on the layered MoS2-graphene and horseradish peroxidase nanocomposite for direct electrochemistry and electrocatalysis. Biosens Bioelectron 56:137CrossRefGoogle Scholar
  16. 16.
    Wang TY, Zhu HC, Zhuo JQ, Zhu ZW (2013) Pagona papakonstantinou, Gennady lubarsky, Jian Lin, and meixian Li, biosensor based on ultrasmall MoS2 nanoparticles for electrochemical detection of H2O2 released by cells at the nanomolar level. Anal Chem 85:10289CrossRefGoogle Scholar
  17. 17.
    Huang KJ, Wang L, Li J, Liu YM (2013) Electrochemical sensing based on layered MoS2-graphene composites. Sens Actuat B 178:671CrossRefGoogle Scholar
  18. 18.
    Huang KJ, Liu YJ, Wang HB, Gan T, Liu YM, Wang LL (2014) Signal amplification for electrochemical DNA biosensor based on two-dimensional graphene analogue tungsten sulfide-graphene composites and gold nanoparticles. Sens Actuat B 191:828CrossRefGoogle Scholar
  19. 19.
    Huang KJ, Liu YJ, Wang HB, Wang YY, Liu YM (2014) Sub-femtomolar DNA detection based on layered molybdenum disulfide/multi-walled carbon nanotube composites, Au nanoparticle and enzyme multiple signal amplification. Biosens Bioelectron 55:195CrossRefGoogle Scholar
  20. 20.
    Yang CY, Wang Q, Xiang Y, Yuan R, Chai YQ (2014) Target-induced strand release and thionine-decorated gold nanoparticle amplification labels for sensitive electrochemical aptamer-based sensing of small molecules. Sens Actuators B 197:149CrossRefGoogle Scholar
  21. 21.
    Luo P, Liu Y, Xia Y, Xu HJ, Xie GM (2014) Aptamer biosensor for sensitive detection of toxin A of Clostridium difficile usinggold nanoparticles synthesized by Bacillus stearothermophilus. Biosens Bioelectron 54:217CrossRefGoogle Scholar
  22. 22.
    Dong HF, Zhu Z, Ju HX, Yan F (2012) Triplex signal amplification for electrochemical DNA biosensing by coupling probe-gold nanoparticles–graphene modified electrode with enzyme functionalized carbon sphere as tracer. Biosens Bioelectron 33:228CrossRefGoogle Scholar
  23. 23.
    Kalanur SS, Chae SY, Joo OS (2013) Transparent Cu1.8S and CuS thin films on FTO as efficient counter electrode for quantum dotsolar cells. Electrochim Acta 103:91CrossRefGoogle Scholar
  24. 24.
    Güneri E, Kariper A (2012) Optical properties of amorphous CuS thin films deposited chemically at different pH values. J Alloy Compd 516:20CrossRefGoogle Scholar
  25. 25.
    Chaudhary GR, Bansal P, Mehta SK (2014) Recyclable CuS quantum dots as heterogeneous catalyst for Biginelli reaction under solvent free conditions. Chem Eng J 243:217CrossRefGoogle Scholar
  26. 26.
    Wang YR, Zhang XW, Chen P, Liao HT, Cheng SQ (2012) In situ preparation of CuS cathode with unique stability and high rate performance for lithium ion batteries. Electrochim Acta 80:264CrossRefGoogle Scholar
  27. 27.
    Qian L, Mao JF, Tian XQ, Yuan HY, Xiao D (2013) In situ synthesis of CuS nanotubes on Cu electrode for sensitive nonenzymatic glucose sensor. Sensors Actuators B 176:952CrossRefGoogle Scholar
  28. 28.
    Hai H, Yang F, Li JP (2014) Highly sensitive electrochemiluminescence “turn-on” aptamer sensor for lead(II) ion based on the formation of a G-quadruplex on a graphene and gold nanoparticles modified electrode. Microchim Acta 181:893CrossRefGoogle Scholar
  29. 29.
    Liu B, Lu LS, Hua EH, Jiang ST, Xie GM (2012) Detection of the human prostate-specific antigen using an aptasensor with gold nanoparticles encapsulated by graphitized mesoporous carbon. Microchim Acta 178:163CrossRefGoogle Scholar
  30. 30.
    Bollero A, Fernández S, Rozman KZ, Samardzija Z, Grossberg M (2012) Preparation and quality assessment of CuS thin films encapsulated in glass. Thin Solid Films 520:4184CrossRefGoogle Scholar
  31. 31.
    Lin ZY, Chen LF, Zhang GY, Liu QD, Qiu B, Cai ZW, Chen GN (2012) Label-free aptamer-based electrochemical impedance biosensor for 17β-estradiol. Analyst 137:819CrossRefGoogle Scholar
  32. 32.
    Olowu RA, Arotiba O, Mailu SN, Waryo TT, Baker P, Iwuoha E (2010) Electrochemical aptasensor for endocrine disrupting 17β-estradiol based on a poly(3,4-ethylenedioxylthiopene)-gold nanocomposite platform. Sensors 10:9872CrossRefGoogle Scholar
  33. 33.
    Salci B, Biryol I (2002) Voltammetric investigation of β-estradiol. Pharm Biomed Anal 28:753CrossRefGoogle Scholar
  34. 34.
    Song JC, Yang J, Hu XM (2008) Electrochemical determination of estradiol using a poly(L-Serine) film-modified electrode. J Appl Electrochem 38:833CrossRefGoogle Scholar
  35. 35.
    Lin XQ, Li YX (2006) A sensitive determination of estrogens with a Pt nano-clusters/multi-walled carbon nanotubes modified glassy carbon electrode. Biosens Bioelectron 22:253CrossRefGoogle Scholar
  36. 36.
    Huang KJ, Liu YJ, Shi GW, Yang XR, Liu YM (2014) Label-free aptamer sensor for 17β-estradiol based on vanadiumdisulfide nanoflowers and Au nanoparticles. Sensors Actuat B 201:579CrossRefGoogle Scholar
  37. 37.
    Li J, Yang ZJ, Tang Y, Zhang YC, Hu XY (2013) Carbon nanotubes-nanoflake-like SnS2 nanocomposite for direct electrochemistry of glucose oxidase and glucose sensing. Biosens Bioelectron 41:698CrossRefGoogle Scholar
  38. 38.
    Janegitz BC, Dos Santos FA, Faria RC, Zucolotto V (2014) Electrochemical determination of estradiol using a thin film containing reduced graphene oxide and dihexadecylphosphate. Mater Sci Eng C 37:14CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringXinyang Normal UniversityXinyangChina
  2. 2.State Key Laboratory of Chemo/biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan UniversityChangshaChina

Personalised recommendations