Advertisement

Microchimica Acta

, Volume 182, Issue 1–2, pp 385–394 | Cite as

Oxygen sensor nanoparticles for monitoring bacterial growth and characterization of dose–response functions in microfluidic screenings

  • Jialan Cao
  • Stefan Nagl
  • Erika Kothe
  • J. Michael Köhler
Original Paper

Abstract

We are presenting a microfluidic droplet-based system for non-invasive, simultaneous optical monitoring of oxygen during bacterial cultivation in nL-sized droplets using ~350 nm nanobeads made from polystyrene and doped with the NIR-emitting oxygen probe platinum (II) 5, 10, 15, 20-meso-tetraphenyltetrabenzoporphyrin (PtTPTBP). Data were readout by a two-channel micro flow-through fluorimeter and a two-channel micro flow-through photometer. The time-resolved miniaturized optical multi endpoint detection was applied to simultaneously sense dissolved oxygen, cellular autofluorescence, and cell density in nL-sized segments. Two bacterial strains were studied that are resistant to heavy metal ions, viz. Streptomyces acidiscabies E13 and Psychrobacillus psychrodurans UrPLO1. The study has two main features in that it demonstrates (a) the possibility to monitor the changes in oxygen partial pressure during metabolic activity of different bacterial cultures inside droplets, and (b) the efficiency of droplet-based microfluidic techniques along with multi-parameter optical sensing for highly resolved microtoxicological screenings in aquatic systems.

Graphical Abstract

Microfluidic droplet-based system with multi-parameter optical sensing for bacterial cultivation and highly resolved microtoxicological screenings in nanoliter droplets.

Keywords

Droplet-based microfluidics Oxygen sensor Optical probe-doped micro and nanoparticles Micro cultivation Highly-resolved dose/response function 

Notes

Acknowledgments

J. Cao is funded by German Federal Environmental Foundation under contract No. 20009/009. S. Nagl is funded by and thanks the German Research Foundation (DFG, NA 947/1-2). The authors gratefully acknowledge the funding from German Federal Ministry of Education and Research in the frame of the project BactoCat (Kz: 031A161A). We thank S. Schneider, F. Weise and F. Möller for excellent experimental and technical assistance, Prof. N. Sträter and Dr. C. Roth (Institute of Bioanalytical Chemistry, University of Leipzig) for dynamic light scattering and Dr. A. Funfak (Laboratoire d'Hydrodynamique, Ecole Polytechnique, Palaiseau, France) for helpful discussions.

References

  1. 1.
    Dusenbery DB (1996) Life at small scale—the behavior of microbes. Scientific American Library, New YorkGoogle Scholar
  2. 2.
    Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271Google Scholar
  3. 3.
    Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276:734–740CrossRefGoogle Scholar
  4. 4.
    Ward DM, Weller R, Bateson MM (1990) 16s ribosomal-Rna sequences reveal numerous uncultured microorganisms in a natural community. Nature 345:63–65CrossRefGoogle Scholar
  5. 5.
    Haferburg G, Kothe E (2007) Microbes and metals: interactions in the environment. J Basic Microbiol 47:453–467CrossRefGoogle Scholar
  6. 6.
    Vallenet D, Engelen S, Mornico D, Cruveiller S, Fleury L, Lajus A, Rouy Z, Roche D, Salvignol G, Scarpelli C, Medigue C (2009) MicroScope: a platform for microbial genome annotation and comparative genomics. Database-OxfordGoogle Scholar
  7. 7.
    Suthanthiran M (1997) Clinical application of molecular biology: a study of allograft rejection with polymerase chain reaction. Am J Med Sci 313:264–267CrossRefGoogle Scholar
  8. 8.
    Joo C, Balci H, Ishitsuka Y, Buranachai C, Ha T (2008) Advances in single-molecule fluorescence methods for molecular biology. Annu Rev Biochem 77:51–76CrossRefGoogle Scholar
  9. 9.
    Stone HA, Stroock AD, Ajdari A (2004) Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu Rev Fluid Mech 36:381–411CrossRefGoogle Scholar
  10. 10.
    Budden M, Schneider S, Groß A, Kohler JM (2013) Microfluidic encoding: generation of arbitrary droplet sequences by electrical switching in microchannels. Sensors Actuators A Phys 189:288–297CrossRefGoogle Scholar
  11. 11.
    Yang CG, Xu ZR, Wang JH (2010) Manipulation of droplets in microfluidic systems. TrAC Trends Anal Chem 29:141–157CrossRefGoogle Scholar
  12. 12.
    Cao J, Kursten D, Schneider S, Knauer A, Gunther PM, Kohler JM (2012) Uncovering toxicological complexity by multi-dimensional screenings in microsegmented flow: modulation of antibiotic interference by nanoparticles. Lab Chip 12:474–484CrossRefGoogle Scholar
  13. 13.
    Lim CT, Zhang Y (2007) Bead-based microfluidic immunoassays: the next generation. Biosens Bioelectron 22:1197–1204CrossRefGoogle Scholar
  14. 14.
    Hartung R, Brosing A, Sczcepankiewicz G, Liebert U, Hafner N, Durst M, Felbel J, Lassner D, Kohler JM (2009) Application of an asymmetric helical tube reactor for fast identification of gene transcripts of pathogenic viruses by micro flow-through PCR. Biomed Microdevices 11:685–692CrossRefGoogle Scholar
  15. 15.
    Funfak A, Cao JL, Wolfbeis O, Martin K, Kohler J (2009) Monitoring cell cultivation in microfluidic segments by optical pH sensing with a micro flow-through fluorometer using dye-doped polymer particles. Microchim Acta 164:279–286CrossRefGoogle Scholar
  16. 16.
    Semenza GL (2007) Life with oxygen. Science 318:62–64CrossRefGoogle Scholar
  17. 17.
    Winkler LW (1888) Die Bestimmung des im Wasser gelösten Sauerstoffes. Ber Dtsch Chem Ges 21:2843–2854CrossRefGoogle Scholar
  18. 18.
    Kinoshita K (1992) Electrochemical oxygen technology. In: Wiley-InterscienceGoogle Scholar
  19. 19.
    Vanderkooi JM, Maniara G, Green TJ, Wilson DF (1987) An optical method for measurement of dioxygen concentration based upon quenching of phosphorescence. J Biol Chem 262:5476–5482Google Scholar
  20. 20.
    Stich MIJ, Schaeferling M, Wolfbeis OS (2009) Multicolor fluorescent and permeation-selective microbeads enable simultaneous sensing of pH, oxygen, and temperature. Adv Mater 21:2216–2220CrossRefGoogle Scholar
  21. 21.
    Nagl S, Stich MIJ, Schaferling M, Wolfbeis OS (2009) Method for simultaneous luminescence sensing of two species using optical probes of different decay time, and its application to an enzymatic reaction at varying temperature. Anal Bioanal Chem 393:1199–1207CrossRefGoogle Scholar
  22. 22.
    Borisov SM, Klimant I (2009) Luminescent nanobeads for optical sensing and imaging of dissolved oxygen. Microchim Acta 164:7–15CrossRefGoogle Scholar
  23. 23.
    Abbyad P, Tharaux PL, Martin JL, Baroud CN, Alexandrou A (2010) Sickling of red blood cells through rapid oxygen exchange in microfluidic drops. Lab Chip 10:2505–2512CrossRefGoogle Scholar
  24. 24.
    Wang XD, Achatz DE, Hupf C, Sperber M, Wegener J, Bange S, Lupton JM, Wolfbeis OS (2013) Imaging of cellular oxygen via two-photon excitation of fluorescent sensor nanoparticles. Sensors Actuators B Chem 188:257–262CrossRefGoogle Scholar
  25. 25.
    Stitt DT, Nagar MS, Haq TA, Timmins MR (2002) Determination of growth rate of microorganisms in broth from oxygen-sensitive fluorescence plate reader measurements. Biotechniques 32:684Google Scholar
  26. 26.
    Jasionek G, Ogurtsov V, Papkovsky D (2013) Rapid detection and respirometric profiling of aerobic bacteria on panels of selective media. J Appl Microbiol 114:423–432CrossRefGoogle Scholar
  27. 27.
    O'Mahony FC, Papkovsky DB (2006) Rapid high-throughput assessment of aerobic bacteria in complex samples by fluorescence-based oxygen respirometry. Appl Environ Microbiol 72:1279–1287CrossRefGoogle Scholar
  28. 28.
    Arain S, John GT, Krause C, Gerlach J, Wolfbeis OS, Klimant I (2006) Characterization of microtiterplates with integrated optical sensors for oxygen and pH, and their applications to enzyme activity screening, respirometry, and toxicological assays. Sensors Actuators B Chem 113:639–648CrossRefGoogle Scholar
  29. 29.
    O'Mahony FC, O'Donovan C, Hynes J, Moore T, Davenport J, Papkovsky DB (2005) Optical oxygen microrespirometry as a platform for environmental toxicology and animal model studies. Environ Sci Technol 39:5010–5014CrossRefGoogle Scholar
  30. 30.
    Hopwood DA (2006) Soil to genomics: the streptomyces chromosome. Annu Rev Genet 40:1–23CrossRefGoogle Scholar
  31. 31.
    Valko M, Morris H, Cronin MTD (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208CrossRefGoogle Scholar
  32. 32.
    Langella F, Grawunder A, Stark R, Weist A, Merten D, Haferburg G, Buchel G, Kothe E (2013) Microbially assisted phytoremediation approaches for two multi-element contaminated sites. Environ Sci Pollut Res Int. doi: 10.1007/s11356-11013-12165-11350 Google Scholar
  33. 33.
    Rogers JE, Nguyen KA, Hufnagle DC, McLean DG, Su WJ, Gossett KM, Burke AR, Vinogradov SA, Pachter R, Fleitz PA (2003) Observation and interpretation of annulated porphyrins: studies on the photophysical properties of meso-tetraphenylmetalloporphyrins. J Phys Chem A 107:11331–11339CrossRefGoogle Scholar
  34. 34.
    Borisov SM, Nuss G, Klimant I (2008) Red light-excitable oxygen sensing materials based on platinum(II) and palladium(II) benzoporphyrins. Anal Chem 80:9435–9442CrossRefGoogle Scholar
  35. 35.
    Cao J, Kursten D, Krause K, Kothe E, Martin K, Roth M, Kohler JM (2013) Application of micro-segmented flow for two-dimensional characterization of the combinatorial effect of zinc and copper ions on metal-tolerant Streptomyces strains. Appl Microbiol Biotechnol 97:8923–8930CrossRefGoogle Scholar
  36. 36.
    Preininger C, Klimant I, Wolfbeis OS (1994) Optical-fiber sensor for biological oxygen-demand. Anal Chem 66:1841–1846CrossRefGoogle Scholar
  37. 37.
    Riedel K, Renneberg R, Kuhn M, Scheller F (1988) A fast estimation of biochemical oxygen-demand using microbial sensors. Appl Microbiol Biotechnol 28:316–318Google Scholar
  38. 38.
    Papkovsky DB, Dmitriev RI (2013) Biological detection by optical oxygen sensing. Chem Soc Rev 42:8700–8732CrossRefGoogle Scholar
  39. 39.
    John GT, Klimant I, Wittmann C, Heinzle E (2003) Integrated optical sensing of dissolved oxygen in microtiter plates: a novel tool for microbial cultivation. Biotechnol Bioeng 81:829–836CrossRefGoogle Scholar
  40. 40.
    Lam RHW, Kim MC, Thorsen T (2009) Culturing aerobic and anaerobic bacteria and mammalian cells with a microfluidic differential oxygenator. Anal Chem 81:5918–5924CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Jialan Cao
    • 1
  • Stefan Nagl
    • 2
  • Erika Kothe
    • 3
  • J. Michael Köhler
    • 1
  1. 1.Institute of Micro- and Nanotechnologies/Institute for Chemistry and Biotechnology, Department of Physical Chemistry and Microreaction TechnologyIlmenau University of TechnologyIlmenauGermany
  2. 2.Institute of Analytical ChemistryUniversity of LeipzigLeipzigGermany
  3. 3.Institute of Microbiology, Department of Microbial CommunicationFriedrich-Schiller-UniversityJenaGermany

Personalised recommendations