Advertisement

Microchimica Acta

, Volume 181, Issue 13–14, pp 1565–1572 | Cite as

A bare-eye-based lateral flow immunoassay based on the use of gold nanoparticles for simultaneous detection of three pesticides

  • Limin Wang
  • Jia Cai
  • Yulong Wang
  • Qingkui Fang
  • Suyan Wang
  • Qi Cheng
  • Dan Du
  • Yuehe Lin
  • Fengquan Liu
Original Paper

Abstract

We present a novel lateral flow immunoassay (LFIA) for the simultaneous detection of the pesticides imidacloprid, chlorpyrifos-methyl and isocarbophos based on three competitive immunoreactions. In contrast to previously reported LFIAs, the method is based on the use of four strips. Each has three red channels (three test lines dispensed with different capture reagent) to detect imidacloprid, chlorpyrifos-methyl and isocarbophos respectively. Different channels on each strip are the key to multi-detection, and four strips of LFIA are needed for visual and semi-quantitative read-outs. Under optimized conditions, the LFIA was applied to the determination of three pesticides. The detection time is within 7 min and the detection limits are 50, 100, and 100 μg L−1, respectively. Furthermore, the LFIA was applied to the analysis of spiked Chinese cabbage and soil samples and results were validated by HPLC.

Figure

Design of the Lateral Flow Immunoassay. The LFIA made up of four strips (Strip 1 to Strip 4), and each strip dispensed with three kinds of capture antigens on different channels (CH1 to CH3)

Keywords

Lateral flow immunoassay Simultaneous detection Competitive immunoreactions Bare eye readout 

Notes

Acknowledgments

This work was done at Nanjing Agricultural University and supported by the National High Technology Research and Development Program of China (2012AA101401-1, 2013AA065601), and the Youth Science and Technology Innovation Foundation of NJAU (KJ2012003)

References

  1. 1.
    Xu CD, Armstrong DW (2013) High-performance liquid chromatography with paired ion electrospray ionization (PIESI) tandem mass spectrometry for the highly sensitive determination of acidic pesticides in water. Anal Chim Acta 792:1–9CrossRefGoogle Scholar
  2. 2.
    Carneiro RP, Oliveira FAS, Madureira FD, Silva G, de Souza WR, Lopes RP (2013) Development and method validation for determination of 128 pesticides in bananas by modified QuEChERS and UHPLC-MS/MS analysis. Food Control 33(2):413–423CrossRefGoogle Scholar
  3. 3.
    Chen L, Chen J, Guo Y, Li J, Yang Y, Xu L, Fu F (2014) Study on the simultaneous determination of seven benzoylurea pesticides in Oolong tea and their leaching characteristics during infusing process by HPLC-MS/MS. Food Chem 143:405–410CrossRefGoogle Scholar
  4. 4.
    Merdassa Y, Liu J-F, Megersa N (2013) Development of a one-step microwave-assisted extraction method for simultaneous determination of organophosphorus pesticides and fungicides in soils by gas chromatography–mass spectrometry. Talanta 114:227–234CrossRefGoogle Scholar
  5. 5.
    Tiwari MK, Guha S (2013) Simultaneous analysis of endosulfan, chlorpyrifos, and their metabolites in natural soil and water samples using gas chromatography-tandem mass spectrometry. Environ Monit Assess 185(10):8451–8463CrossRefGoogle Scholar
  6. 6.
    Zhou B, Li H-L, Ma J, Dong F, Hao F-T (2013) Determination method for 17 pesticides in common in whole blood by gaschromatogvaphy coupled to smass spectrometry with solid-phase extraction sample cleanup. Chin J Ind Hyg Occup Dis 31(9):709–712Google Scholar
  7. 7.
    Peruga A, Hidalgo C, Sancho JV, Hernandez F (2013) Development of a fast analytical method for the individual determination of pyrethrins residues in fruits and vegetables by liquid chromatography-tandem mass spectrometry. J Chromatogr A 1307:126–134CrossRefGoogle Scholar
  8. 8.
    Hao CY, Zhao XM, Morse D, Yang P, Taguchi V, Morra F (2013) Optimized liquid chromatography tandem mass spectrometry approach for the determination of diquat and paraquat herbicides. J Chromatogr A 1304:169–176CrossRefGoogle Scholar
  9. 9.
    Hua XD, Wang LM, Li G, Fang QK, Wang MH, Liu FQ (2013) Multi-analyte enzyme-linked immunosorbent assay for organophosphorus pesticides and neonicotinoid insecticides using a bispecific monoclonal antibody. Anal Methods 5(6):1556–1563CrossRefGoogle Scholar
  10. 10.
    Li M, Sheng EZ, Cong LJ, Wang MH (2013) Development of immunoassays for detecting clothianidin residue in agricultural products. J Agric Food Chem 61(15):3619–3623CrossRefGoogle Scholar
  11. 11.
    Wang LM, Zhang Q, Chen DF, Liu Y, Li CY, Hu BS, Du D, Liu FQ (2011) Development of a specific enzyme-linked immunosorbent assay (ELISA) for the analysis of the organophosphorous pesticide fenthion in real samples based on monoclonal antibody. Anal Lett 44(9):1591–1601CrossRefGoogle Scholar
  12. 12.
    Liu ZJ, Yan X, Xu XY, Wang MH (2013) Development of a chemiluminescence enzyme-linked immunosorbent assay for the simultaneous detection of imidaclothiz and thiacloprid in agricultural samples. Analyst 138(11):3280–3286CrossRefGoogle Scholar
  13. 13.
    Mai NN, Liu XY, Wei WZ, Luo SL, Liu W (2011) Electrochemical determination of paraquat using a DNA-modified carbon ionic liquid electrode. Microchim Acta 174(1–2):89–95CrossRefGoogle Scholar
  14. 14.
    Li X, Li P, Zhang Q, Li R, Zhang W, Zhang Z, Ding X, Tang X (2013) Multi-component immunochromatographic assay for simultaneous detection of aflatoxin B1, ochratoxin a and zearalenone in agro-food. Biosens Bioelectron 49:426–432CrossRefGoogle Scholar
  15. 15.
    Liu CY, Jia QJ, Yang CH, Qiao RR, Jing LH, Wang LB, Xu CL, Gao MY (2011) Lateral flow immunochromatographic assay for sensitive pesticide detection by using Fe3O4 nanoparticle aggregates as color reagents. Anal Chem 83(17):6778–6784CrossRefGoogle Scholar
  16. 16.
    Zhang DH, Li PW, Liu W, Zhao L, Zhang Q, Zhang W, Ding XX, Wang JL (2013) Development of a detector-free semiquantitative immunochromatographic assay with major aflatoxins as target analytes. Sensors Actuators B Chem 2013(185):432–437CrossRefGoogle Scholar
  17. 17.
    Taranova NA, Byzova NA, Zaiko VV, Starovoitova TA, Vengerov YY, Zherdev AV, Dzantiev BB (2013) Integration of lateral flow and microarray technologies for multiplex immunoassay: application to the determination of drugs of abuse. Microchim Acta 180(11–12):1165–1172CrossRefGoogle Scholar
  18. 18.
    Kim YA, Lee EH, Kim KO, Lee YT, Hammock BD, Lee HS (2011) Competitive immunochromatographic assay for the detection of the organophosphorus pesticide chlorpyrifos. Anal Chim Acta 693:106–113CrossRefGoogle Scholar
  19. 19.
    Guo YR, Liu SY, Gui WJ, Zhu GN (2009) Gold immunochromatographic assay for simultaneous detection of carbofuran and triazophos in water sample. Anal Biochem 389:32–39CrossRefGoogle Scholar
  20. 20.
    Le T, Yan PF, Xu J, Hao YJ (2013) A novel colloidal gold-based lateral flow immunoassay for rapid simultaneous detection of cyromazine and melamine in foods of animal origin. Food Chem 138:1610–1615CrossRefGoogle Scholar
  21. 21.
    Blažková M, Rauch P, Fukal L (2010) Strip based immunoassay for rapid detection of thiabendazole. Biosens Bioelectron 25:2122–2128CrossRefGoogle Scholar
  22. 22.
    Na Y, Sheng W, Yuan M, Li LL, Liu B, Zhang Y, Wang S (2012) Enzyme-linked immunosorbent assay and immunochromatographic strip for rapid detection of atrazine in water samples. Microchim Acta 177:177–184CrossRefGoogle Scholar
  23. 23.
    Liu CY, Jia QJ, Yang CH, Qiao RR, Jing LH, Wang LB, Xu CL, Gao MY (2011) Lateral flow immunochromatographic assay for sensitive pesticide detection by using Fe3O4 nanoparticle aggregates as color reagents. Anal Chem 83:6778–6784CrossRefGoogle Scholar
  24. 24.
    Hua XD, Qian GL, Yang JF, Hu BS, Fan JQ, Qin N, Li G, Wang YY, Liu FQ (2010) Development of an immunochromatographic assay for the rapid detection of chlorpyrifos-methyl in water samples. Biosens Bioelectron 26:189–194CrossRefGoogle Scholar
  25. 25.
    Zhou P, Lu YT, Xhu J, Hong JG, Li B, Zhou J, Gong D, Montoya A (2004) Nanocolloidal gold-based immunoassay for the detection of the N-Methylcarbamate pesticide carbofuran. J Agric Food Chem 52:4355–4359CrossRefGoogle Scholar
  26. 26.
    Hua XD, Yang JF, Wang LM, Fang QK, Zhang GP, Liu FQ (2012) Development of an enzyme linked immunosorbent assay and an immunochromatographic assay for detection of organophosphorus pesticides in different agricultural products. PLoS One 7(12):e53099CrossRefGoogle Scholar
  27. 27.
    Zhu J, Chen WC, Lu YT, Cheng GH (2008) Development of an immunochromatographic assay for the rapid detection of bromoxynil in water. Environ Pollut 156:136–142CrossRefGoogle Scholar
  28. 28.
    Zhou Y, Li Y-S, Meng X-Y, Zhang Y-Y, Yang L, Zhang J-H, Wang X-R, Lu S-Y, Ren H-L, Liu Z-S (2013) Development of an immunochromatographic strip and its application in the simultaneous determination of Hg(II), Cd(II) and Pb(II). Sensors Actuators B Chem 183:303–309CrossRefGoogle Scholar
  29. 29.
    Liu BH, Tsao ZJ, Wang JJ, Yu FY (2008) Development of a monoclonal antibody against ochratoxin A and its application in enzyme-linked immunosorbent assay and gold nanoparticle immunochromatographic strip. Anal Chem 80(18):7029–7035CrossRefGoogle Scholar
  30. 30.
    Molinelli A, Grossalber K, Fuehrer M, Baumgartner S, Sulyok M, Krska R (2008) Development of qualitative and semiquantitative immunoassay-based rapid strip tests for the detection of T-2 toxin in wheat and oat. J Agric Food Chem 56(8):2589–2594CrossRefGoogle Scholar
  31. 31.
    Mei ZL, Deng Y, Chu HQ, Xue F, Zhong YH, Wu JJ, Yang H, Wang ZC, Zheng L, Chen W (2013) Immunochromatographic lateral flow strip for on-site detection of bisphenol A. Microchim Acta 180:279–285CrossRefGoogle Scholar
  32. 32.
    Sheng W, Li YZ, Xu X, Yuan M, Wang S (2011) Enzyme-linked immunosorbent assay and colloidal gold-based immunochromatographic assay for several (fluoro)quinolones in milk. Microchim Acta 173:307–316CrossRefGoogle Scholar
  33. 33.
    Zhang D, Li P, Zhang Q, Li R, Zhang W, Ding X, Li CM (2012) A naked-eye based strategy for semiquantitative immunochromatographic assay. Anal Chim Acta 740:74–79CrossRefGoogle Scholar
  34. 34.
    Weigl B, Domingo G, LaBarre P, Gerlach J (2008) Towards non- and minimally instrumented, microfluidics-based diagnostic devices. Lab Chip 8(12):1999–2014CrossRefGoogle Scholar
  35. 35.
    Li G, Ji XY, Qian GL, Hua XD, Qin N, Wang J, Liu FQ (2011) Production and identification of monoclonal antibodies against pesticide imidacloprid. Chin J Biotechnol 27(6):943–951Google Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Limin Wang
    • 1
    • 2
  • Jia Cai
    • 1
    • 2
  • Yulong Wang
    • 1
    • 2
  • Qingkui Fang
    • 1
    • 2
  • Suyan Wang
    • 1
    • 2
  • Qi Cheng
    • 1
    • 2
  • Dan Du
    • 3
  • Yuehe Lin
    • 3
  • Fengquan Liu
    • 1
    • 2
  1. 1.College of Plant ProtectionNanjing Agricultural UniversityNanjingPeople’s Republic of China
  2. 2.China/Key Laboratory of Integrated Management of Crop Disease and Pests (Nanjing Agricultural University)Ministry of EducationNanjingPeople’s Republic of China
  3. 3.School of Mechanical and Materials EngineeringWashington State UniversityPullmanUSA

Personalised recommendations