Microchimica Acta

, Volume 181, Issue 15–16, pp 1815–1821 | Cite as

Smartphone based bacterial detection using biofunctionalized fluorescent nanoparticles

  • Vinoth Kumar Rajendran
  • Padmavathy Bakthavathsalam
  • Baquir Mohammed Jaffar Ali
Original Paper

Abstract

We are describing immunochromatographic test strips with smart phone-based fluorescence readout. They are intended for use in the detection of the foodborne bacterial pathogens Salmonella spp. and Escherichia coli O157. Silica nanoparticles (SiNPs) were doped with FITC and Ru(bpy), conjugated to the respective antibodies, and then used in a conventional lateral flow immunoassay (LFIA). Fluorescence was recorded by inserting the nitrocellulose strip into a smart phone-based fluorimeter consisting of a light weight (40 g) optical module containing an LED light source, a fluorescence filter set and a lens attached to the integrated camera of the cell phone in order to acquire high-resolution fluorescence images. The images were analysed by exploiting the quick image processing application of the cell phone and enable the detection of pathogens within few minutes. This LFIA is capable of detecting pathogens in concentrations as low as 105 cfu mL−1 directly from test samples without pre-enrichment. The detection is one order of magnitude better compared to gold nanoparticle-based LFIAs under similar condition. The successful combination of fluorescent nanoparticle-based pathogen detection by LFIAs with a smart phone-based detection platform has resulted in a portable device with improved diagnosis features and having potential application in diagnostics and environmental monitoring.

Figure

The successful combination of fluorescent nanoparticle-based pathogen detection by lateral flow immunoassay with a smart phone-based detection platform has resulted in a portable device that enables rapid and reliable bacterial detection holding large potential in diagnostics and environmental monitoring

Keywords

Biosensor Nanoparticles Bacterial diagnosis Immunofluorescence Point - of - care 

Notes

Acknowledgments

We acknowledge Central Instrumentation Facility, Pondicherry University for SEM imaging and FT-IR characterization. We thank Dr.T.Vaidehi, Sundaram Medical Foundation Hospital, Chennai for providing clinical isolates of Salmonella spp. and Dr. Gagandeep Kang, Christian Medical College, Vellore for providing Escherichia coli O157. BP thanks Council of Scientific and Industrial Research (CSIR) for the award of Senior Research Fellowship.

Supplementary material

604_2014_1242_MOESM1_ESM.pdf (621 kb)
ESM 1(PDF 621 kb)

References

  1. 1.
    Urdea M, Penny LA, Olmsted SS, Giovanni MY, Kaspar P (2006) Requirements for high impact diagnostics in the developing world. Nature 23:73–79CrossRefGoogle Scholar
  2. 2.
    Posthuma-Trumpie GA, Korf J, Jvan Amerongen A (2009) Lateral flow (immuno) assay: its strengths, weaknesses, opportunities and threats. A literature survey. Anal Bioanal Chem 393:569–582CrossRefGoogle Scholar
  3. 3.
    Pyo DJ (2007) Comparison of fluorescence immunochromatographic assay strip and gold colloidal immunochromatographic assay strip for detection of microcystin. Anal Lett 40:907–919CrossRefGoogle Scholar
  4. 4.
    Zaytseva NV, Montagna RA, Lee EM, Baeumner AJ (2004) Multi-analyte single-membrane biosensor for the serotype-specific detection of Dengue virus. Anal Bioanal Chem 380:46–53CrossRefGoogle Scholar
  5. 5.
    Khreich N, Lamourette P, Boutal H, Devilliers K, Créminon C, Volland H (2008) Detection of Staphylococcus enterotoxin B using fluorescent immunoliposomes as label for immunochromatographic testing. Anal Biochem 377:182–188CrossRefGoogle Scholar
  6. 6.
    Yang H, Li D, He D, Guo Q, Wang K, Zhang XQ, Huang P, Cui DX (2010) A novel quantum dots-based point of care test for syphilis. Nanoscale Res Lett 5:875–881CrossRefGoogle Scholar
  7. 7.
    Juntunen E, Myyryläinen T, Salminen T, Soukka T, Pettersson K (2012) Performance of fluorescent europium (III) nanoparticles and colloidal gold reporters in lateral flow bioaffinity assay. Anal Biochem 428:31–38CrossRefGoogle Scholar
  8. 8.
    Cho EB, Volkov DO, Sokolov I (2011) Ultrabright fluorescent silica mesoporous silica nanoparticles: control of particle size and dye loading. Adv Funct Mater 2:3129–3135CrossRefGoogle Scholar
  9. 9.
    Penders J, Fiers T, Giri M, Wuyts B, Ysewyn L, Delanghe JR (2005) Quantitative measurement of ketone bodies in urine using Reflectometry. Clin Chem Lab Med 43:724–729CrossRefGoogle Scholar
  10. 10.
    Zeng Q, Mao X, Xu H, Wang S, Liu G (2009) Quantitative immunochromatographic strip biosensor for the detection of carcinoembryonic antigen tumor biomarker in human plasma. Am J Biomed Sci 1:70–79CrossRefGoogle Scholar
  11. 11.
    Liu G, Lin Y, Wang J, Wu H, Wai CM, Lin Y (2007) Disposable electrochemical immunosensor diagnosis device based on nanoparticles probe and immunochromatographic strip. Anal Chem 79:7644–7653CrossRefGoogle Scholar
  12. 12.
    Mao X, Baloda M, Gurung AS, Lin Y, Liu G (2008) Multiplex electrochemical immunoassay using gold nanoparticles probes and immunochromatographic strips. Electrochem Commun 10:1636–1640CrossRefGoogle Scholar
  13. 13.
    Smith ZJ, Chu K, Espenson AR, Rahimzadeh M, Gryshuk A (2011) Cell-phone-based platform for biomedical device development and education applications. PLoS ONE 6:e17150CrossRefGoogle Scholar
  14. 14.
    Choodum A, Kanatharana P, Wongniramaikul W, Nic Daeid N (2013) Using the iPhone as a device for a rapid quantitative analysis of trinitrotoluene in soil. Talanta 15:143–149CrossRefGoogle Scholar
  15. 15.
    Wei Q, Qi H, Luo W, Tseng D, Ki SJ, Wan Z, Gorocs Z, Bentolila LA, Wu TT, Sun R, Ozcan A (2013) Fluorescent imaging of single nanoparticles and viruses on a smart phone. ACS Nano 7:9147–9155CrossRefGoogle Scholar
  16. 16.
    Coskun AF, Nagi R, Sadeghi K, Phillips S, Ozcan A (2013) Albumin testing in urine using a smart-phone. Lab Chip 7:4231–4238CrossRefGoogle Scholar
  17. 17.
    Zhu H, Sencan I, Wong J, Dimitrov S, Tseng D, Nagashima K, Ozcan A (2013) Cost-effective and rapid blood analysis on a cell-phone. Lab Chip 13:1282–1288CrossRefGoogle Scholar
  18. 18.
    Wang SX, Zhou XJ (2008) Spectroscopic sensor on mobile phone. U.S. Patent 7420663Google Scholar
  19. 19.
    Breslauer DN, Maamari RN, Switz NA, Lam WA, Fletcher DA (2009) Mobile phone based clinical microscopy for global health applications. PLoS ONE 4:e6320CrossRefGoogle Scholar
  20. 20.
    Mudanyali O, Dimitrov S, Sikora U, Padmanabhan S, Navruz I, Ozcan A (2012) Integrated rapid-diagnostic –test reader platform on a cellphone. Lab Chip 12:2678–2686CrossRefGoogle Scholar
  21. 21.
    Wang L, Tan W (2006) Multicolor FRET silica nanoparticles by single wavelength excitation. Nano Lett 6:84–88CrossRefGoogle Scholar
  22. 22.
    Santra S, Wang K, Tapec R, Tan W (2001) Development of novel dye-doped silica nanoparticles for biomarker application. J Biomed Opt 6:160–166CrossRefGoogle Scholar
  23. 23.
    Padmavathy B, Vinoth Kumar R, Uttara S, Suvro C, Jaffar Ali BM (2013) Immunomagnetic nanoparticles based quantitative PCR for rapid detection of Salmonella. Microchim Acta 180:1241–1248CrossRefGoogle Scholar
  24. 24.
    Tanaka R, Yukhi T, Nagatani N, Endo T, Kerman K, Takamura Y, Tamiya E (2006) A novel enhancement assay for immunochromatographic test strips using gold nanoparticles. Anal Bioanal Chem 385:1414–1420CrossRefGoogle Scholar
  25. 25.
  26. 26.
  27. 27.
    Shen G, Xu H, Gurung AS, Yang Y, Liu G (2013) Lateral flow immunoassay with the signal enhanced by gold nanoparticle aggregates based on polyamidoamine dendrimer. Anal Sci 29:799–804CrossRefGoogle Scholar
  28. 28.
    Wang H, Zhang C, Xing D (2011) Simultaneous detection of Salmonella enterica, Escherichia coli O157:H7, and Listeria monocytogenes using oscillatory – flow multiplex PCR. Microchim Acta 173:503–512CrossRefGoogle Scholar
  29. 29.
    Lui G, Xiaofeng Y, Xue F, Chen W, Ye Y, Yang X, Lian Y, Yan Y, Zong K (2012) Screening and preliminary application of a DNA aptamer for rapid detection of Salmonella O8. Microchim Acta 178:237–244CrossRefGoogle Scholar
  30. 30.
    Roda A, Mirasoli M, Roda B, Bonvicini F, Colliva C, Reschiglian P (2012) Recent developments in rapid multiplexed bioanalytical methods for foodborne pathogenic bacteria detection. Microchim Acta 178:7–28CrossRefGoogle Scholar
  31. 31.
    Ryan KJ, Ray CG (2004) Sherris medical microbiology: an introduction to infectious disease. McGraw-Hill, New YorkGoogle Scholar
  32. 32.
    Wang XD, Meier RJ, Wolfbeis OS (2013) Fluorescent pH-sensitive nanoparticles in an agarose matrix for imaging of bacteria growth and metabolism. Angew Chem Int Ed 52:406–409CrossRefGoogle Scholar
  33. 33.
    Lee LG, Nordman ES, Johnson MD, Oldham MF (2013) A Low-cost, high-performance system for fluorescence lateral flow assays. Biosensors 3:360–373CrossRefGoogle Scholar
  34. 34.
    Bamrungsap S, Apiwat C, Chantima W, Dharakul T (2013) Rapid and sensitive lateral flow immunoassay for influenza antigen using fluorescently – doped silica nanoparticles. Microchim Acta. doi:10.1007/s00604-013-1106-4 Google Scholar
  35. 35.
    Filippini D, Alimelli A, Di Natale C, Paolesse R, D’Amico A, Lundstorm I (2006) Chemical sensing with familiar devices. Angew Chem 118:3884–3887CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Vinoth Kumar Rajendran
    • 1
  • Padmavathy Bakthavathsalam
    • 1
    • 3
  • Baquir Mohammed Jaffar Ali
    • 2
  1. 1.AU-KBC Research CentreM.I.T. Campus of Anna UniversityChennaiIndia
  2. 2.Centre for Green Energy TechnologyPondicherry UniversityPuducherryIndia
  3. 3.Welcome Trust – DBT India Alliance Early Career FellowInstitute of Microbial TechnologyChandigarhIndia

Personalised recommendations