Advertisement

Microchimica Acta

, Volume 181, Issue 15–16, pp 1823–1832 | Cite as

Magnetic molecularly imprinted polymer nanoparticles for the solid-phase extraction of paracetamol from plasma samples, followed its determination by HPLC

  • Saman Azodi-Deilami
  • Alireza Hassani Najafabadi
  • Ebadullah Asadi
  • Majid Abdouss
  • Davood Kordestani
Original Paper

Abstract

We are presenting magnetic molecularly imprinted polymer nanoparticles (m-MIPs) for solid-phase extraction and sample clean-up of paracetamol. The m-MIPs were prepared from magnetite (Fe3O4) as the magnetic component, paracetamol as the template, methacrylic acid as a functional monomer, and 2-(methacrylamido) ethyl methacrylate as a cross-linker. The m-MIPs were then characterized by transmission electron microscopy, FT-IR spectroscopy, X-ray diffraction and vibrating sample magnetometry. The m-MIPs were applied to the extraction of paracetamol from human blood plasma samples. Following its elution from the column loaded with the m-MIPs with an acetonitrile-buffer (9:1) mixture, it was submitted to HPLC analysis. Paracetamol can be quantified by this method in the 1 μg L−1 to 300 μg L−1 concentration range. The limit of detection and limit of quantification in plasma samples are 0.17 and 0.4 μg L−1. The preconcentration factor of the m-MIPs is 40. The HPLC method shows good precision (4.5 % at 50 μg L−1 levels) and recoveries (between 83 and 91 %) from spiked plasma samples.

Figure

We are presenting magnetic molecularly imprinted polymer nanoparticles (m-MIPs) for solid-phase extraction and sample clean-up of paracetamol. The m-MIPs were applied to the extraction of paracetamol from human blood plasma samples

Keywords

Molecularly imprinted polymer nanoparticles Magnetic solid phase extraction Human plasma samples Cross-link agent HPLC 

Supplementary material

604_2014_1230_MOESM1_ESM.docx (588 kb)
ESM 1 (DOCX 587 kb)

References

  1. 1.
    Zhong Z, Li G, Zhong X, Luo Z, Zhu B (2013) Ultrasound-assisted low-density solvent dispersive liquid-liquid extraction for the determination of alkanolamines and alkylamines in cosmetics with ion chromatography. Talanta 115:518–525CrossRefGoogle Scholar
  2. 2.
    Rezaee M, Mashayekhi HA, Saleh A, Abdollahzadeh Y, Naeeni MH, Fattahi N (2013) Determination of abamectin in citrus fruits using SPE combined with dispersive liquid–liquid microextraction and HPLC-UV detection. J Sep Sci 36:2629–2634CrossRefGoogle Scholar
  3. 3.
    Negreira N, López de Alda M, Barceló D (2013) On-line solid phase extraction–liquid chromatography–tandem mass spectrometry for the determination of 17 cytostatics and metabolites in waste, surface and ground water samples. J Chromatogr A 1280:64–74CrossRefGoogle Scholar
  4. 4.
    Rajabi AA, Yamini Y, Faraji M, Seidi S (2013) Solid-phase microextraction based on cetyltrimethylammonium bromide-coated magnetic nanoparticles for determination of antidepressants from biological fluids. Med Chem Res 22:1570–1577CrossRefGoogle Scholar
  5. 5.
    Azodi-Deilami S, Abdouss M, Hasani AR (2010) Preparation and utilization of a molecularly imprinted polymer for solid phase extraction of tramadol. Cent Eur J Chem 8:861–869CrossRefGoogle Scholar
  6. 6.
    Abdouss M, Azodi-Deilami S, Asadi E, Shariatinia Z (2012) Synthesis of molecularly imprinted polymer as a sorbent for solid phase extraction of citalopram from human serum and urine. J Mater Sci Mater Med 23:1543–1552CrossRefGoogle Scholar
  7. 7.
    Wulf G (2013) Fourty years of molecular imprinting in synthetic polymers: origin, features and perspectives. Microchim Acta 180:1359–1370CrossRefGoogle Scholar
  8. 8.
    Zhu S, Gan N, Pan D, LI Y, Yang T, Hu F, Cao Y, Wu D (2013) Extraction of tributyltin by magnetic molecularly imprinted polymers. Microchim Acta 180:545–553CrossRefGoogle Scholar
  9. 9.
    Duan YP, Dai CM, Zhang YL, Chen L (2013) Selective trace enrichment of acidic pharmaceuticals in real water and sediment samples based on solid-phase extraction using multi-templates molecularly imprinted polymers. Anal Chim Acta 758:93–100CrossRefGoogle Scholar
  10. 10.
    Junping W, Mingfei P, Guozhen F, Shuo W (2009) Preparation of a novel molecularly imprinted polymer by a sol–gel process for on-line solid-phase extraction coupled with high performance liquid chromatography to detect trace enrofloxacin in fish and chicken samples. Microchim Acta 166:295–302CrossRefGoogle Scholar
  11. 11.
    Valdés MG, Valdés González AC, García Calzón JA, Díaz-García ME (2009) Analytical nanotechnology for food analysis. Microchim Acta 166:1–19CrossRefGoogle Scholar
  12. 12.
    Hui L, Xu W, Wang N, Ma X, Niu D, Jiang B, Liu L, Huang W, Yang W, Zhou Z (2012) Synthesis of magnetic molecularly imprinted polymer particles for selective adsorption and separation of dibenzothiophene. Microchim Acta 179:123–130CrossRefGoogle Scholar
  13. 13.
    He D, Zhang X, Gao B, Wang L, Zhao Q, Chen H, Wang H, Zhao C (2014) Preparation of magnetic molecularly imprinted polymer for the extraction of melamine from milk followed by liquid chromatography-tandem mass spectrometry. Food Control 36:36–41CrossRefGoogle Scholar
  14. 14.
    Chen L, Li B (2013) Magnetic molecularly imprinted polymer extraction of chloramphenicol from honey. Food Chem 141:23–28CrossRefGoogle Scholar
  15. 15.
    Quesada-Molina C, Claude B, Garcia-Campana A, Olmo-Iruela M, Morin P (2012) Convenient solid phase extraction of cephalosporins in milk using a molecularly imprinted polymer. Food Chem 135:775–779CrossRefGoogle Scholar
  16. 16.
    Fan JP, Tian ZY, Tong S, Zhang XH, Xie YL, Xu R, Qin Y, Li L, Zhu JH, Ouyang XK (2013) A novel molecularly imprinted polymer of the specific ionic liquid monomer for selective separation of synephrine from methanol–water media. Food Chem 141:3578–3585CrossRefGoogle Scholar
  17. 17.
    Yang X, Zhang Z, Li J, Chen X, Zhang M, Luo L, Yao S (2014) Novel molecularly imprinted polymers with carbon nanotube as matrix for selective solid-phase extraction of emodin from kiwi fruit root. Food Chem 145:687–693CrossRefGoogle Scholar
  18. 18.
    Tang K, Gu X, Luo Q, Chen S, Wu L, Xiong J (2014) Preparation of molecularly imprinted polymer for use as SPE adsorbent for the simultaneous determination of five sulphonylurea herbicides by HPLC. Food Chem 150:106–112CrossRefGoogle Scholar
  19. 19.
    Sanagi MM, Salleh S, Aini W, Ibrahim W, Naim AA, Hermawan D, Miskam M, Hussain I, Aboul-Enein HY (2013) Molecularly imprinted polymer solid-phase extraction for the analysis of organophosphorus pesticides in fruit samples. J Food Compos Anal 32:155–161CrossRefGoogle Scholar
  20. 20.
    Prasad BB, Srivastava A, Prasad A, Tiwari MP (2014) Molecularly imprinted micro solid-phase extraction technique coupled with complementary molecularly imprinted polymer-sensor for ultra-trace analysis of epinephrine in real samples. Colloids Surf B 113:69–76CrossRefGoogle Scholar
  21. 21.
    Sibrian-Vazquez M, Spivak DA (2004) Molecular imprinting made easy. J Am Chem Soc 126:7827–7833CrossRefGoogle Scholar
  22. 22.
    Yang D, Hu J, Fu S (2009) Controlled Synthesis of Magnetite−Silica Nanocomposites via a Seeded Sol−gel Approach. J Phys Chem 113:7646–7651Google Scholar
  23. 23.
    Jiang J, Song K, Chen Z, Zhou Q, Tang Y, Gu F, Zou X, Xu Z (2011) Novel molecularly imprinted microsphere using a single chiral monomer and chirality-matching (S)-ketoprofen Template. J Chromatogr A 1218:3763–3770CrossRefGoogle Scholar
  24. 24.
    Sun H, Hong J, Meng F, Gong P, Yu J, Xue Y, Zhao S, Xu D, Dong L, Yao S (2006) Novel core-shell structure polyacrylamide-coated magnetic nanoparticles synthesized via photochemical polymerization. Surf Coat Technol 201:250–254CrossRefGoogle Scholar
  25. 25.
    Jensen LS, Valentine J, Milane RW, Evans AM (2004) The quantification of paracetamol, paracetamol glucuronide and paracetamol sulphate in plasma and urine using a single high-performance liquid chromatography assay. J Pharm Biomed Anal 34:585–593CrossRefGoogle Scholar
  26. 26.
    Ayora- Cañada MJ, Pascual-Reguera MI, Ruiz Medina A, Fernández de Córdova ML, Molina Díaz A (2000) Fast determination of paracetamol by using a very simple photometric flow-through sensing device. J Pharm Biomed Anal 22:59–66CrossRefGoogle Scholar
  27. 27.
    Kunkel A, Günter S, Wätzig H (1997) Quantitation of acetaminophen and salicylic acid in plasma using capillary electrophoresis without sample pretreatment improvement of precision. J Chromatogr A 768:125–133CrossRefGoogle Scholar
  28. 28.
    Alkayer M, Vallon JJ, Pegon Y, Bichon C (1981) Dosage direct du paracetamol dans les milieux biologiques par polarographie sinusoidale. Anal Chim Acta 124:113–119CrossRefGoogle Scholar
  29. 29.
    Haque A, Stewart JT (1999) Determination of Acetaminophen, Caffeine, and butalbital in a commercial tablet dosage from by micellar electrokinetic chromatography. J Liq Chromatogr Relat 22:2159–2166CrossRefGoogle Scholar
  30. 30.
    Ruiz Medina A, Fernández de Córdova ML, Molina Díaz A (1999) A very simple resolution of the mixture paracetamol and salicylamide by flow injection–solid phase spectrophotometry. Anal Chim Acta 394:149–158CrossRefGoogle Scholar
  31. 31.
    Patil ST, Sundaresan M, Bhoir IC, Bhagwat AM (1999) Packed column supercritical fluid chromatographic separation and estimation of acetaminophen, diclofenac sodium and methocarbamol in pharmaceutical dosage forms. Talanta 47:3–10CrossRefGoogle Scholar
  32. 32.
    Pérez JL, Bello MA (1999) Determination of paracetamol in dosage forms by non-suppressed ion chromatography. Talanta 48:1199–1202CrossRefGoogle Scholar
  33. 33.
    Tantishaiyakul V, Phadoongsombut N, Kamaung S, Wongwisansri S, Mathurod P (1999) Fourier transform infrared spectrometric determination of paracetamol and ibuprofen in tablets. Pharmazie 54:111–114Google Scholar
  34. 34.
    Bohnenstengel F, Kroemer HK, Sperker B (1999) In vitro cleavage of paracetamol glucuronide by human liver and kidney β-glucuronidase: determination of paracetamol by capillary electrophoresis. J Chromatogr B 721:295–299CrossRefGoogle Scholar
  35. 35.
    Tan Y, Zhou Z, Wang P, Nie L, Yao S (2001) A study of a bio-mimetic recognition material for the BAW sensor by molecular imprinting and its application for the determination of paracetamol in the human serum and urine. Talanta 55:337–347CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Saman Azodi-Deilami
    • 1
  • Alireza Hassani Najafabadi
    • 1
  • Ebadullah Asadi
    • 1
  • Majid Abdouss
    • 1
  • Davood Kordestani
    • 2
  1. 1.Department of ChemistryAmirkabir University of TechnologyTehranIran
  2. 2.Faculty of Chemistry, Department of Organic ChemistryRazi UniversityKermanshahIran

Personalised recommendations