Advertisement

Microchimica Acta

, Volume 181, Issue 11–12, pp 1239–1247 | Cite as

Cytosine-assisted synthesis of gold nanochains and gold nanoflowers for the construction of a microperoxidase-11 based amperometric biosensor for hydrogen peroxide

  • Qian-Li Zhang
  • Dan-Ling Zhou
  • Yong-Fang Li
  • Ai-Jun WangEmail author
  • Su-Fang Qin
  • Jiu-Ju FengEmail author
Original Paper

Abstract

A simple method was developed for synthesis of network-like gold nanochains and gold nanoflowers in the presence of cytosine by reduction of tetrachloroauric acid with sodium borohydride and ascorbic acid, respectively. The resulting gold nanocrystals were coated with microperoxidase-11 via electrostatic interactions. Electrodes modified with protein-coated gold nanochains or nanoflowers display well-defined and quasireversible redox peaks and enhanced high electrocatalytic activity toward the reduction of H2O2 that is due to direct electron transfer to the protein. The effects were exploited for the amperometric detection of H2O2 with a linear response from 0.5 μM to 0.13 mM (for the gold nanochains) and from1.0 μM to 0.11 mM (for the gold nanoflowers), respectively. The sensor shows lower detection limit and faster response time than sensors based on the use of spherical gold nanoparticles.

Figure

A simple method was developed in the synthesis of network-like Au nanochains and Au nanoflowers in the presence of cytosine by reduction of tetrachloroauric acid with sodium borohydride and ascorbic acid, respectively. Thus-prepared Au nanocrystals were further employed for the construction of microperoxidase-11 based biosensors.

Keywords

Cytosine Gold nanochains Gold nanoflowers Microperoxidase-11 Biosensor 

Notes

Acknowledgments

This work was financially supported by the NSFC (Nos. 21175118 and 21275130) and colleges in Zhejiang province to the young academic leaders of academic climbing project (pd2013055).

Supplementary material

604_2014_1226_MOESM1_ESM.pdf (211 kb)
ESM 1 (PDF 210 kb)

References

  1. 1.
    Cobley CM, Chen J, Cho EC, Wang LV, Xia Y (2011) Gold nanostructures: a class of multifunctional materials for biomedical applications. Chem Soc Rev 40:44CrossRefGoogle Scholar
  2. 2.
    Xiao J, Qi L (2011) Surfactant-assisted, shape-controlled synthesis of gold nanocrystals. Nanoscale 3:1383CrossRefGoogle Scholar
  3. 3.
    Chen S, Yuan R, Chai Y, Hu F (2013) Electrochemical sensing of hydrogen peroxide using metal nanoparticles: a review. Microchim Acta 180:15CrossRefGoogle Scholar
  4. 4.
    Gao MR, Zhang SR, Xu YF, Zheng YR, Jiang J, Yu SH (2014) Self-assembled platinum nanochain networks driven by induced magnetic dipoles. Adv Funct Mater. 24:878Google Scholar
  5. 5.
    Zheng Y, Huang Z, Zhao C, Weng S, Zheng W, Lin X (2013) A gold electrode with a flower-like gold nanostructure for simultaneous determination of dopamine and ascorbic acid. Microchim Acta 180:537CrossRefGoogle Scholar
  6. 6.
    Zhao C, Yifeng E, Fan L (2012) Enhanced electrochemical evolution of oxygen by using nanoflowers made from a gold and iridium oxide composite. Microchim Acta 178:107CrossRefGoogle Scholar
  7. 7.
    You H, Yang S, Ding B, Yang H (2013) Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications. Chem Soc Rev 42:2880CrossRefGoogle Scholar
  8. 8.
    Huang D, Bai X, Zheng L (2011) Ultrafast preparation of three-dimensional dendritic gold nanostructures in aqueous solution and their applications in catalysis and SERS. J Phys Chem C 115:14641CrossRefGoogle Scholar
  9. 9.
    Zhou X, Xu W, Liu G, Panda D, Chen P (2010) Size-dependent catalytic activity and dynamics of gold nanoparticles at the single-molecule level. J Am Chem Soc 132:138CrossRefGoogle Scholar
  10. 10.
    Jin R, Sun S, Yang Y, Xing Y, Yu D, Yu X, Song S (2013) Size-dependent catalytic properties of Au nanoparticles supported on hierarchical nickel silicate nanostructures. Dalton Trans 42:7888CrossRefGoogle Scholar
  11. 11.
    Fang C, Fan Y, Kong JM, Gao ZQ, Balasubramanian N (2008) Preparation of nanochain and nanosphere by self-assembly of gold nanoparticles. Appl Phys Lett 92:236108Google Scholar
  12. 12.
    He H, Cai W, Lin Y, Chen B (2010) Au nanochain-built 3D netlike porous films based on laser ablation in water and electrophoretic deposition. Chem Commun 46:7223CrossRefGoogle Scholar
  13. 13.
    He J, Zhang P, Babu T, Liu Y, Gong J, Nie Z (2013) Near-infrared light-responsive vesicles of Au nanoflowers. Chem Commun 49:576CrossRefGoogle Scholar
  14. 14.
    Xie J, Zhang Q, Lee JY, Wang DIC (2008) The synthesis of SERS-active gold nanoflower tags for in vivo applications. ACS Nano 2:2473CrossRefGoogle Scholar
  15. 15.
    Wang MH, Li YJ, Xie ZX, Liu C, Yeung ES (2010) Fabrication of large-scale one-dimensional Au nanochain and nanowire networks by interfacial self-assembly. Mater Chem Phys 119:153CrossRefGoogle Scholar
  16. 16.
    Chang JY, Wu H, Chen H, Ling YC, Tan W (2005) Oriented assembly of Au nanorods using biorecognition system. Chem Commun 8:1092CrossRefGoogle Scholar
  17. 17.
    Zhang S, Kou X, Yang Z, Shi Q, Stucky GD, Sun L, Wang J, Yan C (2007) Nanonecklaces assembled from gold rods, spheres, and bipyramids. Chem Commun :1816Google Scholar
  18. 18.
    Jia H, Bai X, Zheng L (2012) One-step synthesis and assembly of gold nanochains using the Langmuir monolayer of long-chain ionic liquids and their applications to SERS. CrystEngComm 14:2920CrossRefGoogle Scholar
  19. 19.
    Wang AJ, Qin SF, Zhou DL, Cai LY, Chen JR, Feng JJ (2013) Caffeine assisted one-step synthesis of flower-like gold nanochains and their catalytic behaviors. RSC Adv 3:14766CrossRefGoogle Scholar
  20. 20.
    Zhang QL, Wang AJ, Meng ZY, Lu YH, Lin HJ, Feng J-J (2013) A study on the direct electrochemistry and electrocatalysis of microperoxidase-11 immobilized on a porous network-like gold film: sensing of hydrogen peroxide. Microchim Acta 180:581CrossRefGoogle Scholar
  21. 21.
    Ju H, Liu S, Ge B, Lisdat F, Scheller FW (2002) Electrochemistry of cytochrome c immobilized on colloidal gold modified carbon paste electrodes and its electrocatalytic activity. Electroanalysis 14:141CrossRefGoogle Scholar
  22. 22.
    Qin Y, Song Y, Sun N, Zhao N, Li M, Qi L (2008) Ionic liquid-assisted growth of single-crystalline dendritic gold nanostructures with a three-fold symmetry. Chem Mater 20:3965CrossRefGoogle Scholar
  23. 23.
    Feng JJ, Li AQ, Lei Z, Wang AJ (2012) Low-potential synthesis of clean Au nanodendrites and their high performance toward ethanol oxidation. ACS Appl Mater Interfaces 4:2570CrossRefGoogle Scholar
  24. 24.
    Feng JJ, Lv ZY, Qin SF, Li AQ, Fei Y, Wang AJ (2013) N-methylimidazole-assisted electrodeposition of Au porous textile-like sheet arrays and its application to electrocatalysis. Electrochim Acta 102:312CrossRefGoogle Scholar
  25. 25.
    Wang AJ, Li YF, Wen M, Yang G, Feng JJ, Yang J, Wang HY (2012) Melamine assisted one-pot synthesis of Au nanoflowers and their catalytic activity towards p-nitrophenol. New J Chem 36:2286CrossRefGoogle Scholar
  26. 26.
    Lv ZY, Li AQ, Fei Y, Li Z, Chen JR, Wang AJ, Feng JJ (2013) Facile and controlled electrochemical route to three-dimensional hierarchical dendritic gold nanostructures. Electrochim Acta 109:136CrossRefGoogle Scholar
  27. 27.
    Tao AR, Habas S, Yang P (2008) Shape control of colloidal metal nanocrystals. Small 4:325CrossRefGoogle Scholar
  28. 28.
    Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2179CrossRefGoogle Scholar
  29. 29.
    Wang Y, Choi SI, Zhao X, Xie S, Peng HC, Chi M, Huang CZ, Xia Y (2014) Polyol synthesis of ultrathin Pd nanowires via attachment-based growth and their enhanced activity towards formic acid oxidation. Adv Funct Mater 24:131CrossRefGoogle Scholar
  30. 30.
    Varma S, Yigzaw Y, Gorton L (2006) Prussian blue-glutamate oxidase modified glassy carbon electrode: a sensitive l-glutamate and β-N-oxalyl-α, β-diaminopropionic acid (β-ODAP) sensor. Anal Chim Acta 556:325CrossRefGoogle Scholar
  31. 31.
    Sun H, Zhu X, Zhang L, Zhang Y, Wang D (2010) Capture and release of genomic DNA by PEI modified Fe3O4/Au nanoparticles. Mater Sci Eng C 30:311CrossRefGoogle Scholar
  32. 32.
    Yarman A, Neumann B, Bosserdt M, Gajovic-Eichelmann N, Scheller FW (2012) Peroxide-dependent analyte conversion by the heme prosthetic group, the heme peptide “microperoxidase-11” and cytochrome c on chitosan capped gold nanoparticles modified electrodes. Biogeosciences 2:189Google Scholar
  33. 33.
    Feng JJ, Xu JJ, Chen HY (2006) Direct electron transfer and electrocatalysis of hemoglobin adsorbed onto electrodeposited mesoporous tungsten oxide. Electrochem Commun 8:77CrossRefGoogle Scholar
  34. 34.
    Haghighi B, Bozorgzadeh S, Gorton L (2011) Fabrication of a novel electrochemiluminescence glucose biosensor using Au nanoparticles decorated multiwalled carbon nanotubes. Sensors Actuators B Chem 155:577CrossRefGoogle Scholar
  35. 35.
    Astuti Y, Topoglidis E, Durrant JR (2011) Use of microperoxidase-11 to functionalize tin dioxide electrodes for the optical and electrochemical sensing of hydrogen peroxide. Anal Chim Acta 686:126CrossRefGoogle Scholar
  36. 36.
    Patolsky F, Gabriel T, Willner I (1999) Controlled electrocatalysis by microperoxidase-11 and Au-nanoparticle superstructures on conductive supports. J Electroanal Chem 479:69CrossRefGoogle Scholar
  37. 37.
    Feng JJ, Li ZH, Li YF, Wang AJ, Zhang PP (2012) Electrochemical determination of dioxygen and hydrogen peroxide using Fe3O4@SiO2@hemin microparticles. Microchim Acta 176:201CrossRefGoogle Scholar
  38. 38.
    Gao ZD, Liu HF, Li CY, Song Y-Y (2013) Biotemplated synthesis of Au nanoparticles-TiO2 nanotube junctions for enhanced direct electrochemistry of heme proteins. Chem Commun 49:774CrossRefGoogle Scholar
  39. 39.
    Gooding JJ, Wibowo R, Liu YW, Losic D, Orbons S, Mearns FJ, Shapter JG, Hibbert DB (2003) Protein electrochemistry using aligned carbon nanotube arrays. J Am Chem Soc 125:9006CrossRefGoogle Scholar
  40. 40.
    Niu X, Yang W, Wang G, Ren J, Guo H, Gao J (2013) A novel electrochemical sensor of bisphenol A based on stacked graphene nanofibers/gold nanoparticles composite modified glassy carbon electrode. Electrochim Acta 98:167CrossRefGoogle Scholar
  41. 41.
    Feng JJ, Zhao G, Xu JJ, Chen HY (2005) Direct electrochemistry and electrocatalysis of heme proteins immobilized on gold nanoparticles stabilized by chitosan. Anal Biochem 342:280CrossRefGoogle Scholar
  42. 42.
    Zhu X, Yuri I, Gan X, Suzuki I, Li G (2007) Electrochemical study of the effect of nano-zinc oxide on microperoxidase and its application to more sensitive hydrogen peroxide biosensor preparation. Biosens Bioelectron 22:1600CrossRefGoogle Scholar
  43. 43.
    Fang B, Gu A, Wang G, Li B, Zhang C, Fang Y, Zhang X (2009) Synthesis hexagonal β-Ni(OH)2 nanosheets for use in electrochemistry sensors. Microchim Acta 167:47CrossRefGoogle Scholar
  44. 44.
    Xu JZ, Zhu JJ, Wu Q, Hu Z, Chen HY (2003) An amperometric biosensor based on the coimmobilization of horseradish peroxidase and methylene blue on a carbon nanotubes modified electrode. Electroanalysis 15:219CrossRefGoogle Scholar
  45. 45.
    Lin MS, Leu HJ (2005) A Fe3O4-based chemical sensor for cathodic determination of hydrogen peroxide. Electroanalysis 17:2068CrossRefGoogle Scholar
  46. 46.
    Wang F, Liu X, Lu CH, Willner I (2013) Cysteine-mediated aggregation of Au nanoparticles: the development of a H2O2 sensor and oxidase-based biosensors. ACS Nano 7:7278CrossRefGoogle Scholar
  47. 47.
    Zhou DL, Chen DJ, Zhang PP, Li FF, Chen J, Wang AJ, Feng JJ (2014) Facile synthesis of MnO2-Ag hollow microspheres with sheet-like subunits and their catalytic properties. CrystEngComm 16:863CrossRefGoogle Scholar
  48. 48.
    Cui Y, Zhang B, Liu B, Chen H, Chen G, Tang D (2011) Sensitive detection of hydrogen peroxide in foodstuff using an organic–inorganic hybrid multilayer-functionalized graphene biosensing platform. Microchim Acta 174:137CrossRefGoogle Scholar
  49. 49.
    Ren L, Dong J, Cheng X, Xu J, Hu P (2013) Hydrogen peroxide biosensor based on direct electrochemistry of hemoglobin immobilized on gold nanoparticles in a hierarchically porous zeolite. Microchim Acta 180:1333CrossRefGoogle Scholar
  50. 50.
    Wang KM, Li J, Yang X, Shen F, Wang X (2000) A chemiluminescent H2O2 sensor based on horseradish peroxidase immobilized by sol–gel method. Sensors Actuators B Chem 65:239CrossRefGoogle Scholar
  51. 51.
    Shu X, Chen Y, Yuan H, Gao S, Xiao D (2007) H2O2 sensor based on the room-temperature phosphorescence of nano TiO2/SiO2 composite. Anal Chem 79:3695CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  1. 1.College of Chemistry and Life Science, College of Geography and Environmental ScienceZhejiang Normal UniversityJinhuaChina
  2. 2.College of Chemistry and Biological Engineering, Jiangsu Key Laboratory for Environment Functional MaterialsSuzhou University of Science and TechnologySuzhouChina
  3. 3.College of Chemistry and Chemical EngineeringHenan Institute of Science and TechnologyXinxiangChina

Personalised recommendations