Advertisement

Microchimica Acta

, Volume 181, Issue 11–12, pp 1215–1221 | Cite as

Direct electron transfer from native human hemoglobin using a glassy carbon electrode modified with chitosan and a poly(N,N-diethylacrylamide) hydrogel containing red blood cells

  • Zhong-Qin Pan
  • Jing Xie
  • Xiao-Jun Liu
  • Ning Bao
  • Hai-Ying GuEmail author
Original Paper

Abstract

We report on a new whole cell biosensor for hydrogen peroxide. A chitosan-coated glassy carbon electrode (GCE) was modified with poly(N,N-diethylacrylamide) (PDEA) hydrogel containing human red blood cells (RBCs). The morphology of RBCs in the hydrogel was investigated using scanning electron microscopy (SEM). Fourier transform infrared spectroscopy and SEM were applied to study the association of the PDEA chains and RBCs. Uncompromised bioactivity of native human hemoglobin in the RBCs on the modified GCE was confirmed by cyclic voltammetry. The modified electrode showed a faster electron transfer rate and better electrocatalytic activity in the reduction of H2O2 than previously reported sensors. A linear relationship is found between the response to H2O2 and its concentration in the range from 0.11 μM to 12.7 mM. The detection limit is 55 nM at an SNR of 3. It is assumed that the improvement of the biosensor results from the porosity and conductivity of the PDEA hydrogel.

Figure

With the presence of poly(N,N-diethylacrylamide) chains, our novel red blood cells based biosensor displays a fast electron transfer rate and excellent electrocatalytic activity to H2O2. It responds to H2O2 in the concentration range from 0.11 μM to 12.7 mM, and the detection limit is 55 nM (at an SNR of 3).

Keywords

Hydrogels Red blood cells Human native hemoglobin Hydrogen peroxide Direct electron transfer Electrocatalytic activiy 

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant numbers: 21175075, 21375066 and 81202249), the Natural Science Foundation of Jiangsu Province (Grant numbers: BK2011047, BK2012651 and BK2012652), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and the Social Development Item of Nantong City (Grant number: HS2012017).

Supplementary material

604_2014_1222_MOESM1_ESM.pdf (464 kb)
ESM 1 (PDF 464 kb)

References

  1. 1.
    Karube I, Mitsuda S, Mstsunaga T, Suzuki S (1977) A rapid method for estimation of BOD by using immobilized microbial cells. J Ferment Technol 55:243–248Google Scholar
  2. 2.
    Benton MG, Glasser NR, Palecek SP (2008) Detection of MAG1 and MRE11 enhances the sensitivity of the Saccharomyces cerevisiae HUG1P-GFP promoter-reporter construct to genotoxicity. Biosens Bioelectron 24:736–741CrossRefGoogle Scholar
  3. 3.
    Reddy PJ, Sadhu S, Ray S, Srivastava S (2012) Cancer biomarker detection by surface plasmon resonance biosensors. Clin Lab Med 32:47–72CrossRefGoogle Scholar
  4. 4.
    Zong C, Wu J, Wang C, Ju HX, Yan F (2012) Chemiluminescence imaging immunoassay of multiple tumor markers for cancer screening. Anal Chem 84:2410–2415CrossRefGoogle Scholar
  5. 5.
    Zhou LH, Huang GY, Wang SQ, Wu JH, Lee WG, Chen YM, Xu F, Lu TJ (2011) Advances in cell-based biosensors using three-dimensional cell-encapsulating hydrogels. Biotechnol J 6:1466–1470Google Scholar
  6. 6.
    Banerjee P, Bhunia AK (2009) Mammalian cell-based biosensors for pathogens and toxins. Trends Biotechnol 27:179–188CrossRefGoogle Scholar
  7. 7.
    Wang YH, Guo JW, Gu HY (2010) A novel nano-sized bionic function interface for enhancing the ability of red blood cells to carry oxygen. Microchim Acta 171:179–186CrossRefGoogle Scholar
  8. 8.
    Yu CM, Wang L, Zhu ZK, Bao N, Gu HY (2013) Trans-membrane electron transfer in red blood cells immobilized in a chitosan film on a glassy carbon electrode. Microchim Acta. doi: 10.1007/s00604-013-1060-1 Google Scholar
  9. 9.
    Chen S, Duan JJ, Tang YH, Qiao SZ (2013) Hybrid hydrogels of porous graphene and nickel hydroxide as advanced supercapacitor materials. Chem Eur J 19:7118–7124CrossRefGoogle Scholar
  10. 10.
    Maeda Y, Yamamoto H, Ikeda I (2001) Effects of ionization of incorporated imidazole groups on the phase transitions of poly(N-isopropylacrylamide), poly(N, N-diethylacrylamide), and poly(N-vinylcaprolactam) in water. Langmuir 17:6855–6859CrossRefGoogle Scholar
  11. 11.
    Mao H, Li C, Zhang Y, Bergbreiter DE, Cremer PS (2003) Measuring LCSTs by novel temperature gradient methods: evidence for intermolecular interactions in mixed polymer solutions. J Am Chem Soc 125:2850–2851CrossRefGoogle Scholar
  12. 12.
    Chen J, Liu M, Liu H, Ma L, Gao C, Zhu S, Zhang S (2010) Synthesis and properties of thermo- and pH-sensitive poly(diallyldimethylammonium chloride)/poly(N, N-diethylacrylamide) semi-IPN hydrogel. Chem Eng J 159:247–256CrossRefGoogle Scholar
  13. 13.
    Li M, Qi Y, Ding YL, Zhao QL, Fei JJ, Zhou JP (2012) Electrochemical sensing platform based on the quaternized cellulose nanoparticles/acetylene black/enzymes composite film. Sensors Actuators B 168:329–335CrossRefGoogle Scholar
  14. 14.
    Zhang KN, Liang Y, Liu D, Liu HY (2012) An on–off biosensor based on multistimuli-responsive polymer films with a binary architecture and bioelectrocatalysis. Sensors Actuators B 173:367–376CrossRefGoogle Scholar
  15. 15.
    Yao HQ, Hu NF (2011) Triply responsive films in bioelectrocatalysis with a binaryarchitecture: combined layer-by-layer assembly and hydrogel polymerization. J Phys Chem B 115:6691–6699CrossRefGoogle Scholar
  16. 16.
    Chen J, Liu M, Liu H, Ma L (2009) Synthesis, swelling and drug release behavior of poly(N, N-diethylacrylamide-co-N-hydroxymethyl acrylamide) hydrogel. Mater Sci Eng C 29:2116–2123CrossRefGoogle Scholar
  17. 17.
    Ding X, Fries D, Jun B (2006) A study of hydrogel thermal-dynamics using Fourier transform infrared spectrometer. Polymer 47:4718–4725CrossRefGoogle Scholar
  18. 18.
    Pan ZQ, Shi CG, Fan H, Bao N, Yu CM, Liu Y, Lu R, Zhang QH, Gu HY (2012) Multiwall carbon nanotube-CdS/hemoglobin multilayer films for electrochemical and electrochemiluminescent biosensing. Sensors Actuators B 174:421–426CrossRefGoogle Scholar
  19. 19.
    Liang Y, Liu HY, Zhang KN, Hu NF (2012) Triply switchable bioelectrocatalysis based on poly(N, N-diethylacrylamide-co-4-vinylpyridine) copolymer hydrogel films with immobilized glucose oxidase. Electrochim Acta 60:456–463CrossRefGoogle Scholar
  20. 20.
    Lu Q, Hu SS, Pang DW, He ZK (2005) Direct electrochemistry and electrocatalysis with hemoglobin in water-soluble quantum dots film on glassy carbon electrode. Chem Commun 20:2584–2585CrossRefGoogle Scholar
  21. 21.
    Gu HY, Yu AM, Chen HY (2001) Direct electron transfer and characterization of hemoglobin immobilized on a Au colloid-cysteamine-modified gold electrode. J Electroanal Chem 516:119–126CrossRefGoogle Scholar
  22. 22.
    Yu CM, Ji WY, Gou LL, Bao N, Gu HY (2011) The pH-sensitiveswitchable behavior based on the layer-by-layer films of hemoglobin and Ag nanoparticles. Electrochem Commun 13:1502–1505CrossRefGoogle Scholar
  23. 23.
    Zhao G, Xu JJ, Chen HY (2006) Fabrication, characterization of Fe3O4 multilayer film and its application in promoting direct electron transfer of hemoglobin. Electrochem Commun 8:148–154CrossRefGoogle Scholar
  24. 24.
    Yee EL, Cave RJ, Guyer KL, Tyma PD, Weaver MJ (1979) Survey of ligand effects upon thereaction entropies of some transition-metal redox couples. J Am Chem Soc 101:1131–1137CrossRefGoogle Scholar
  25. 25.
    Liu Y, Han T, Chen C, Bao N, Yu CM, Gu HY (2011) A novel platform of hemoglobin on core-shell structurally Fe3O4@Au nanoparticles and its direct electrochemistry. Electrochim Acta 56:3238–3247CrossRefGoogle Scholar
  26. 26.
    Chang TMS (2010) Blood replacement with nanobiotechnologically engineered hemoglobin and hemoglobin nanocapsules. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:418–430CrossRefGoogle Scholar
  27. 27.
    Chen SH, Yuan R, Chai YQ, Hu FX (2013) Electrochemical sensing of hydrogen peroxide using metal nanoparticles: a review. Microchim Acta. doi: 10.1007/s00604-012-0904-4 Google Scholar
  28. 28.
    Yagati AK, Lee T, Min JH, Choi JW (2013) An enzymatic biosensor for hydrogen peroxide based on CeO2 nanostructure electrodeposited on ITO surface. Biosens Bioelectron 47:385–390CrossRefGoogle Scholar
  29. 29.
    Yu CM, Wang YD, Wang L, Zhu ZK, Bao N, Gu HY (2013) Nanostructured biosensors built with layer-by-layer electrostatic assembly of hemoglobin and Fe3O4@Pt nanoparticles. Colloids Surf B 103:231–237CrossRefGoogle Scholar
  30. 30.
    Liu Y, Wang DW, Xu L, Hou HQ, You TY (2011) A novel and simple route to prepare a Pt nanoparticle-loaded carbon nanofiber electrode for hydrogen peroxide sensing. Biosens Bioelectron 26:4585–4590CrossRefGoogle Scholar
  31. 31.
    Wu S, Zhao HT, Ju HX, Shi CG, Zhao JW (2006) Electrodeposition of silver-DNA hybrid nanoparticles for electrochemical sensing of hydrogen peroxide and glucose. Electrochem Commun 8:1197–1203CrossRefGoogle Scholar
  32. 32.
    Chen KJ, Pillai KC, Rick J, Pan CJ, Wang SH, Liu CC, Hwang BJ (2012) Bimetallic PtM (M = Pd, Ir) nanoparticle decorated multi-walled carbon nanotube enzyme-free, mediator-less amperometric sensor for H2O2. Biosens Bioelectron 33:120–127CrossRefGoogle Scholar
  33. 33.
    Han M, Liu S, Bao JC, Dai ZH (2012) Pd nanoparticle assemblies-As the substitude of HRP, in their biosensing applications for H2O2 and glucose. Biosens Bioelectron 31:151–156CrossRefGoogle Scholar
  34. 34.
    Xu YX, Hu CG, Hu SS (2008) Direct electron-transfer of native hemoglobin in blood: kinetics and catalysis. Bioelectrochemistry 72:135–140CrossRefGoogle Scholar
  35. 35.
    Chen C, Liu Y, Gu HY (2010) Cellular biosensor based on red bloodcells immobilized on Fe3O4 core/Au shell nanoparticles for hydrogen peroxide electroanalysis. Microchim Acta 17:371–376CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Zhong-Qin Pan
    • 1
  • Jing Xie
    • 1
  • Xiao-Jun Liu
    • 1
  • Ning Bao
    • 1
  • Hai-Ying Gu
    • 1
    Email author
  1. 1.School of Public HealthNantong University, Institute of Analytical Chemistry for Life ScienceNantongPeople’s Republic of China

Personalised recommendations