Microchimica Acta

, Volume 181, Issue 9–10, pp 941–948 | Cite as

Magnetic nanoparticles grafted with β-cyclodextrin for solid-phase extraction of 5-hydroxy-3-indole acetic acid

  • Gaber Hashem Gaber Ahmed
  • Rosana Badía Laíño
  • Josefa Angela García Calzón
  • Marta Elena Díaz García
Original Paper


We describe the synthesis of ß-cyclodextrin modified magnetic nanoparticles (CD-mNPs) as a material for solid-phase extraction of the cancer biomarker 5-hydroxy-indole-3-acetic acid (5-HIAA) from urine. The CD-mNPs were characterized by TEM, FTIR, and XRD, and the kinetics and adsorption isotherms were studied. The strong interaction between the CD-mNPs and 5-HIAA is the main driving force for recognition and extraction, while the magnetic core of the NPs allows their separation from the sample matrix. Recovery of 5-HIAA from the adsorbent using an adequate solvent regenerated the adsorbent for further use. 5-HIAA was then quantified by fluorometry of its complex with ß-CD. The method works in the 1 × 10−7 to 1 × 10−5 mol L−1 (R2 0.9982–0.9996) concentration range, and the limits of detection (3σ) and quantification (10 σ) of the method are 1.2 × 10−8 mol L−1 and 4.01 × 10−8 mol L−1 5-HIAA, respectively. The recovery of 5-HIAA from urine samples spiked with 5-HIAA in three concentrations (1.4 × 10−6, 4.50 × 10−6 and 1.0 × 10−5 mol L−1) are within 63 ± 3 %.


Cyclodextrin functional magnetic nanoparticles as sorbents for separation of 5-hydroxy-3-indole acetic acid and its fluorescence determination after released with methanol.


Carcinoma marker Magnetic nanoparticles β-cyclodextrin Solid-phase extraction 



Authors gratefully acknowledge financial support from the Science and Innovation Spanish Ministry (Projs # MICINN-09-CTQ2009-09595 and MAT2012-099). Also, G.H.Gaber Ahmed thanks an Erasmus Mundus Medastar grant.

Supplementary material

604_2014_1192_MOESM1_ESM.pdf (473 kb)
ESM 1 (PDF 472 kb)


  1. 1.
    Gubin SP, Koksharov YA, Khomutov GB, Yurkov GY (2005) Magnetic nanoparticles: preparation, structure and properties. Russ Chem Rev 74:489CrossRefGoogle Scholar
  2. 2.
    Weddermann A, Ennen I, Regtmeier A, Albon C, Wolff A, Eckstädt K, Mill N, Peter MKH, Mattay J, Plattner C, Sewald N, Hütten A (2010) Review and outlook: from single nanoparticles to self-assembled monolayers and granular GMR sensors. Beilstein J Nanotechnol 1:75CrossRefGoogle Scholar
  3. 3.
    Tang SCN, Lo IMC (2013) Magnetic nanoparticles: essential factors for sustainable environmental applications. Water Res 47:2613CrossRefGoogle Scholar
  4. 4.
    Indira TK, Lakshmi PK (2010) Magnetic nanoparticles - a review. Int J Pharm Sci Nanotechnol 3:1035Google Scholar
  5. 5.
    Chomoucka J, Drbohlavova J, Huska D, Adam V, Kizek R, Hubalek J (2010) Magnetic nanoparticles and targeted drug delivering. Pharm Res 62:144CrossRefGoogle Scholar
  6. 6.
    Sharma PK, Dutta RK, Pandey AC (2011) Advances in multifunctional magnetic nanoparticles. Adv Mater Lett 2:246CrossRefGoogle Scholar
  7. 7.
    Wadajkar AS, Menon JU, Kadapure T, Tran RT, Yang J, Nguyen KT (2013) Design and application of magnetic-based theranostic nanoparticle systems. Recent Patents Biomed Eng 6:47CrossRefGoogle Scholar
  8. 8.
    Laurent S, Forge D, Port M, Roch A, Robic C, Van der Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064CrossRefGoogle Scholar
  9. 9.
    Gao J, Gu H, Xu B (2009) Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc Chem Res 42:1097CrossRefGoogle Scholar
  10. 10.
    Latham AH, Williams ME (2008) Controlling transport and chemical functionality of magnetic nanoparticles. Acc Chem Res 41:411CrossRefGoogle Scholar
  11. 11.
    Mørup S, Hansen MF, Frandsen C (2010) Magnetic interactions between nanoparticles. Beilstein J Nanotechnol 1:182CrossRefGoogle Scholar
  12. 12.
    Kolhatkar AG, Jamison AC, Litvinov D, Willson RC, Lee TR (2013) Tuning the magnetic properties of nanoparticles. Int J Mol Sci 14:15977CrossRefGoogle Scholar
  13. 13.
    Berry CC, Curtis ASG (2003) Functionalisation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 36:198CrossRefGoogle Scholar
  14. 14.
    Lu AH, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization and application. Angew Chem Int Edit 46:1222CrossRefGoogle Scholar
  15. 15.
    Dodziuk H (ed) (2006) Cyclodextrins and their complexes. Chemistry, analytical methods, applications. Wiley-VCH, WinheimGoogle Scholar
  16. 16.
    Douhal A (2006) Cyclodextrins materials photochemistry, photophysics and photobiology, 1st edn. Elsevier, AmsterdamGoogle Scholar
  17. 17.
    Elbashir AA, Dsugi NF, Mohmed TO, Aboul-Enein HY (2013) Spectrofluorometric analytical applications of cyclodextrins. Luminescence. doi: 10.1002/bio.2504 Google Scholar
  18. 18.
    Loftsson T, Duchêne D (2007) Cyclodextrins and their pharmaceutical applications. Int J Pharm 329:1CrossRefGoogle Scholar
  19. 19.
    Fakayode SO, Lowry M, Fletcher KA, Huang X, Powe AM, Warner IM (2007) Cyclodextrins host-guest chemistry in analytical and environmental chemistry. Curr Anal Chem 3:171CrossRefGoogle Scholar
  20. 20.
    Kang Y, Zhou L, Li X, Yuan J (2011) β-cyclodextrin-modified hybrid magnetic nanoparticles for catalysis and adsorption. J Mater Chem 21:3704CrossRefGoogle Scholar
  21. 21.
    Chalasani R, Vasudevan S (2013) Cyclodextrin-functionalized Fe3O4@TiO2; reusable, magnetic nanoparticles for photocatalytic degradation of endocrine-disrupting chemicals in water supplies. ACS Nano 7:4093CrossRefGoogle Scholar
  22. 22.
    Cai K, Li J, Luo Z, Hu Y, Hou Y, Ding X (2011) β-cyclodextrin conjugated magnetic nanoparticles for diazepam removal from blood. Chem Commun 47:7719CrossRefGoogle Scholar
  23. 23.
    Badruddoza AZM, Tay ASH, Tan PY, Hidajat K, Uddin MS (2011) Carboxymethyl-β-cyclodextrin conjugated magnetic nanoparticles as nano-adsorbents for removal of copper ions: synthesis and adsorption studies. J Hazard Mater 185:1177CrossRefGoogle Scholar
  24. 24.
    Fan L, Zhang Y, Luo C, Lu F, Qiu H, Sun M (2012) Synthesis and characterization of magnetic β-cyclodextrin-chitosan nanoparticles as nano-adsorbents for removal of metyl blue. Int J Biol Macromol 50:444CrossRefGoogle Scholar
  25. 25.
    Du F, Meng H, Xu K, Xu Y, Luo P, Luo Y, Lu W, Huang J, Liu S, Yu J (2014) CPT loaded nanoparticles based on beta-cyclodextrin-grafted poly(ethylene glycol)/poly (L-glutamic acid) diblock copolymer and their inclusion complexes with CPT. Colloids Surf B Biointerfaces 113:230CrossRefGoogle Scholar
  26. 26.
    Sahua S, Mohapatra S (2013) Multifunctional magnetic fluorescent hybrid nanoparticles as carriers for the hydrophobic anticancer drug 5-fluorouracil. Dalton Trans 42:2224CrossRefGoogle Scholar
  27. 27.
    Van der Horst Schrivers ANA, Post WJ, Kema IP, Links TP, Willemse PHB, Wymenga ANM, de Vries EGE (2007) Persistent low urinary excretion of 5-HIAA is a marker for favourable survival during follow-up in patients with disseminated midgut carcinoid tumours. Eur J Cancer 43:2651CrossRefGoogle Scholar
  28. 28.
    Gedde Dahl M, Thiis Evensen E, Myklebust Tjølsen A, Mordal KS, Vatn M, Bergestuen DS (2013) Comparison of 24-h and overnight samples of urinary 5-hydroxyindole acetic acid in patients with intestinal neuroendocrine tumors. Endocr Connect 2:50CrossRefGoogle Scholar
  29. 29.
    De Jong WHA, Graham KS, De Vries EGE, Kema IP (2008) Urinary 5-HIAA measurement using automated on-line solid-phase extraction-high performance liquid chromatography-tandem mass spectrometry. Ned Tijdschr Chem Labgeneesk 33:179Google Scholar
  30. 30.
    Perry H, Keevil B (2008) Online extraction of 5-hydroxyindole acetic acid from urine for analysis by liquid chromatography-tandem mass spectrometry. Ann Clin Biochem 45:149CrossRefGoogle Scholar
  31. 31.
    Mulder EJ, Oosterloo-Duinkerken A, Anderson GM, De Vries EGE, Minderaa RB, Kema IP (2005) Automated on-line solid phase extraction coupled with HPLC for measurement of 5-hydroxyindole-3-acetic acid in urine. Clin Chem 51:1698CrossRefGoogle Scholar
  32. 32.
    Khosroshahi ME, Ghazanfari L (2010) Preparation and characterization of silica-coated iron-oxide bionanoparticles under N2 gas. Phys E 42:1824CrossRefGoogle Scholar
  33. 33.
    Badruddoza AZM, Hidajat K, Uddin MS (2010) Synthesis and characterization of β-cyclodextrin-conjugated magnetic nanoparticles and their uses as solid-phase artificial chaperones in refolding of carbonic anhydrase bovine. J Colloid Interface Sci 346:337CrossRefGoogle Scholar
  34. 34.
    Petter RC, Salek JS, Sikorski CT, Kumaravel G, Lin FT (1990) Cooperative binding by aggregated mono-6-(alky1amino)- β-cyclodextrins. J Am Chem Soc 112:3860CrossRefGoogle Scholar
  35. 35.
    Chutipongtanate S, Thongboonkerd V (2010) Systematic comparisons of artificial urine formulas for in vitro cellular study. Anal Biochem 402:110CrossRefGoogle Scholar
  36. 36.
    Qazi SJS, Rennie AR, Cockcroft JK, Vickers M (2009) Use of wide-angle X-ray diffraction to measure shape and size of dispersed colloidal particles. J Colloid Interface Sci 338:105CrossRefGoogle Scholar
  37. 37.
    Cullity BD (1972) Introduction to magnetic materials. Addison Wesley, New York, p 525Google Scholar
  38. 38.
    Jun YW, Seo JW, Cheon J (2008) Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. Acc Chem Res 41:179CrossRefGoogle Scholar
  39. 39.
    Ma ZY, Guan YP, Liu HZ (2005) Synthesis and characterization of micron-sized monodisperse superparamagnetic polymer particles with amino groups. J Polym Sci Polym Chem 43:3433CrossRefGoogle Scholar
  40. 40.
    Graffeo AP, Karger BL (1976) Analysis for indole compounds in urine by high-performance liquid chromatography with fluorometric detection. Clin Chem 22:184Google Scholar
  41. 41.
    Lagergren S (1898) About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskaps akademiens Handlingar 24:1Google Scholar
  42. 42.
    Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451CrossRefGoogle Scholar
  43. 43.
    Ho YS, McKay G (1998) A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Trans Inst Chem Eng 76:332Google Scholar
  44. 44.
    Maroun J, Kocha W, Kvols L, Bjarnason G, Chen E, Germond C, Hanna S, Poitras P, Rayson D, Reid R, Rivera J, Roy A, Shah A, Sideris L, Siu L, Wong R (2006) Guidelines for the diagnosis and management of carcinoid tumours. Part 1: the gastrointestinal tract. A statement from a Canadian National Carcinoid Expert Group. Curr Oncol 13:67–76Google Scholar
  45. 45.
    Simón de Dios A, Badía Laíño R, Díaz García ME (2013) Cancer biomarker and neurotransmitters recognition by molecularly imprinted xero-gels. Sensors Actuators B Chem 184:48CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Gaber Hashem Gaber Ahmed
    • 1
    • 2
  • Rosana Badía Laíño
    • 1
  • Josefa Angela García Calzón
    • 1
  • Marta Elena Díaz García
    • 1
  1. 1.Department of Physical and Analytical Chemistry, Faculty of ChemistryUniversity of OviedoOviedoSpain
  2. 2.Chemistry Department, Faculty of ScienceDamanhur UniversityDamanhurEgypt

Personalised recommendations