Microchimica Acta

, Volume 181, Issue 9–10, pp 911–916 | Cite as

Thermally treated bare gold nanoparticles for colorimetric sensing of copper ions

  • Hao-Hua Deng
  • Guang-Wen Li
  • Ai-Lin Liu
  • Wei Chen
  • Xin-Hua Lin
  • Xing-Hua Xia
Original Paper


We demonstrate a sensitive and rapid colorimetric assay for selective detection of copper ions based on the strong coordination between Cu(II) ions and the tetrahydroxyaurate anions [Au(OH)4] on the surface of thermally treated bare gold nanoparticles (GNPs). The method for making the unmodified GNPs is simple and results in a nanomaterial with a highly specific response to Cu(II). The thermal treatment of the bare GNPs and the recognition of Cu(II) ions is accomplished in a single step within 5 min. The presence of Cu(II) causes the color to change from red to purple-blue. The limit of detection (LOD) is 0.04 μM of Cu(II) when using UV–vis spectrometry and ratioing the absorbances at 650 and 515 nm, respectively. The method also is amenable to bare eye (visual) inspection and in this case has an LOD of 2.0 μM of Cu(II).


Due to the strong coordination of Cu(II) ions with the tetrahydroxyaurate anions [Au(OH)4]- on the thermally treated bare GNPs, Cu(II) can directly induce the aggregation of the GNPs, resulting in an obvious color change from wine-red to purple-blue.


Colorimetric sensor Gold nanoparticle Thermal treatment Copper ion Quantification 



The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (21175023), the Program for New Century Excellent Talents in University (NCET-12-0618), the Natural Science Foundation of Fujian Province (2011J01034, 2012J06019), and the Program for New Century Excellent Talents in Fujian Province University (JA11102).

Supplementary material

604_2014_1184_MOESM1_ESM.pdf (155 kb)
ESM 1(PDF 155 kb)


  1. 1.
    Saha K, Agasti SS, Kim C, Li XN, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739–2779CrossRefGoogle Scholar
  2. 2.
    Sarma TK, Chattopadhyay A (2004) Starch-mediated shape-selective synthesis of Au nanoparticles with tunable longitudinal plasmon resonance. Langmuir 20:3520–3524CrossRefGoogle Scholar
  3. 3.
    Orendorff CJ, Sau TK, Murphy CJ (2006) Shape-dependent plasmon-resonant gold nanoparticles. Small 2:636–639CrossRefGoogle Scholar
  4. 4.
    Wang S, Chen W, Liu AL, Hong L, Deng HH, Lin XH (2012) Comparison of the peroxidase-like activity of unmodified, amino-modified, and citrate-capped gold nanoparticles. ChemPhysChem 13:1199–1204CrossRefGoogle Scholar
  5. 5.
    Chandirasekar S, Dharanivasan G, Kasthuri J, Kathiravan K, Rajendiran N (2011) Facile synthesis of bile salt encapsulated gold nanoparticles and its use in colorimetric detection of DNA. J Phys Chem C 115:15266–15273CrossRefGoogle Scholar
  6. 6.
    Ou LJ, Jin PY, Chu X, Jiang JH, Yu RQ (2010) Sensitive and visual detection of sequence-specific DNA-binding protein via a gold nanoparticle-based colorimetric biosensor. Anal Chem 82:6015–6024CrossRefGoogle Scholar
  7. 7.
    Lee JS, Ulmann PA, Han MS, Mirkin CA (2008) A DNA-gold nanoparticle-based colorimetric competition assay for the detection of cysteine. Nano Lett 8:529–533CrossRefGoogle Scholar
  8. 8.
    Tripathy SK, Woo JY, Han CS (2011) Highly selective colorimetric detection of hydrochloric acid using unlabeled gold nanoparticles and an oxidizing agent. Anal Chem 83:9206–9212CrossRefGoogle Scholar
  9. 9.
    Chen W, Deng HH, Hong L, Wu ZQ, Wang S, Liu AL, Lin XH, Xia XH (2012) Bare gold nanoparticles as facile and sensitive colorimetric probe for melamine detection. Analyst 137:5382–5386CrossRefGoogle Scholar
  10. 10.
    Lu W, Arumugam R, Senapati D, Singh AK, Arbneshi T, Khan SA, Yu H, Ray PC (2010) Multifunctional oval-shaped gold-nanoparticle-based selective detection of breast cancer cells using simple colorimetric and highly sensitive two-photon scattering assay. ACS Nano 4:1739–1749CrossRefGoogle Scholar
  11. 11.
    Hung YL, Hsiung TM, Chen YY, Huang YF, Huang CC (2010) Colorimetric detection of heavy metal ions using label-free gold nanoparticles and alkanethiols. J Phys Chem C 114:16329–16334CrossRefGoogle Scholar
  12. 12.
    Chai F, Wang CA, Wang TT, Li L, Su ZM (2010) Colorimetric detection of Pb2+ using glutathione functionalized gold nanoparticles. ACS Appl Mater Interfaces 2:1466–1470CrossRefGoogle Scholar
  13. 13.
    Chen S, Fang YM, Xiao Q, Li J, Li SB, Chen HJ, Sun JJ, Yang HH (2012) Rapid visual detection of aluminium ion using citrate capped gold nanoparticles. Analyst 137:2021–2023CrossRefGoogle Scholar
  14. 14.
    Domaille DW, Que EL, Chang CJ (2008) Synthetic fluorescent sensors for studying the cell biology of metals. Nat Chem Biol 4:168–175CrossRefGoogle Scholar
  15. 15.
    Zietz BP, Dieter HH, Lakomek M, Schneider H, Kessler-Gaedtke B, Dunkelberg H (2003) Epidemiological investigation on chronic copper toxicity to children exposed via the public drinking water supply. Sci Total Environ 302:127–144CrossRefGoogle Scholar
  16. 16.
    Barnham KJ, Masters CL, Bush AI (2004) Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov 3:205–214CrossRefGoogle Scholar
  17. 17.
    Georgopoulos PG, Roy A, Yonone-Lioy MJ, Opiekun RE, Lioy PJ (2001) Environmental copper: its dynamics and human exposure issues. J Toxicol Environ Health B Crit Rev 4:341–394CrossRefGoogle Scholar
  18. 18.
    Yantasee W, Hongsirikarn K, Warner CL, Choi D, Sangvanich T, Toloczko MB, Warner MG, Fryxell GE, Addleman RS, Timchalk C (2008) Direct detection of Pb in urine and Cd, Pb, Cu, and Ag in natural waters using electrochemical sensors immobilized with dmsa functionalized magnetic nanoparticles. Analyst 133:348–355CrossRefGoogle Scholar
  19. 19.
    Wang JF, Bian C, Tong JH, Sun JZ, Xia SH (2013) Microsensor chip integrated with gold nanoparticles-modified ultramicroelectrode array for improved electroanalytical measurement of copper ions. Electroanalysis 25:1713–1721CrossRefGoogle Scholar
  20. 20.
    Yang P, Zhao Y, Lu Y, Xu QZ, Xu XW, Dong L, Yu SH (2011) Phenol formaldehyde resin nanoparticles loaded with cdte quantum dots: a fluorescence resonance energy transfer probe for optical visual detection of copper(II) ions. ACS Nano 5:2147–2154CrossRefGoogle Scholar
  21. 21.
    Xiang GQ, Zhang YM, Jiang XM, He LJ, Fan L, Zhao WJ (2010) Determination of trace copper in food samples by flame atomic absorption spectrometry after solid phase extraction on modified soybean hull. J Hazard Mater 179:521–525CrossRefGoogle Scholar
  22. 22.
    Siripinyanond A, Worapanyanond S, Shiowatana J (2005) Field-flow fractionation-inductively coupled plasma mass spectrometry: an alternative approach to investigate metal-humic substances interaction. Environ Sci Technol 39:3295–3301CrossRefGoogle Scholar
  23. 23.
    Liu J, Lu Y (2007) Colorimetric Cu2+ detection with a ligation DNAzyme and nanopairticles. Chem Commun 47:4872–4874Google Scholar
  24. 24.
    Yang WR, Gooding JJ, He ZC, Li Q, Chen GN (2007) Fast colorimetric detection of copper ions using L-cysteine functionalized gold nanoparticles. J Nanosci Nanotechnol 7:712–716Google Scholar
  25. 25.
    Zhou Y, Wang SX, Zhang K, Jiang XY (2008) Visual detection of copper(II) by azide- and alkyne-functionalized gold nanoparticles using click chemistry. Angew Chem Int Ed 47:7454–7456CrossRefGoogle Scholar
  26. 26.
    Xu XY, Daniel WL, Wei W, Mirkin CA (2010) Colorimetric Cu2+ detection using DNA-modified gold-nanoparticle aggregates as probes and click chemistry. Small 6:623–626CrossRefGoogle Scholar
  27. 27.
    Hua C, Zhang WH, De Almeida SRM, Ciampi S, Gloria D, Liu GZ, Harper JB, Gooding JJ (2012) A novel route to copper(II) detection using ‘click’ chemistry-induced aggregation of gold nanoparticles. Analyst 137:82–86CrossRefGoogle Scholar
  28. 28.
    Kumar A, Mandal S, Selvakannan PR, Pasricha R, Mandale AB, Sastry M (2003) Investigation into the interaction between surface-bound alkylamines and gold nanoparticles. Langmuir 19:6277–6282CrossRefGoogle Scholar
  29. 29.
    Ivanova S, Petit C, Pitchon V (2006) Application of heterogeneous gold catalysis with increased durability: oxidation of CO and hydrocarbons at low temperature. Gold Bull 39:3–8CrossRefGoogle Scholar
  30. 30.
    Li P, Duan X, Chen ZZ, Liu Y, Xie T, Fang LB, Li XR, Yin M, Tang B (2011) A near-infrared fluorescent probe for detecting copper(II) with high selectivity and sensitivity and its biological imaging applications. Chem Commun 47:7755–7757CrossRefGoogle Scholar
  31. 31.
    Liu R, Chen Z, Wang S, Qu C, Chen L, Wang Z (2013) Colorimetric sensing of copper(II) based on catalytic etching of gold nanoparticles. Talanta 112:37–42CrossRefGoogle Scholar
  32. 32.
    Wang XK, Chen L, Chen LX (2013) Colorimetric determination of copper ions based on the catalytic leaching of silver from the shell of silver-coated gold nanorods. Microchim Acta. doi:10.1007/s00604-013-1075-7 Google Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Hao-Hua Deng
    • 1
    • 2
  • Guang-Wen Li
    • 2
  • Ai-Lin Liu
    • 1
    • 2
  • Wei Chen
    • 1
    • 2
  • Xin-Hua Lin
    • 1
    • 2
  • Xing-Hua Xia
    • 3
  1. 1.Department of Pharmaceutical AnalysisFujian Medical UniversityFuzhouChina
  2. 2.Nano Medical Technology Research InstituteFujian Medical UniversityFuzhouChina
  3. 3.State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical EngineeringNanjing UniversityNanjingChina

Personalised recommendations