Microchimica Acta

, Volume 181, Issue 13–14, pp 1497–1503 | Cite as

Direct electrochemistry of glucose oxidase and a biosensor for glucose based on a glass carbon electrode modified with MoS2 nanosheets decorated with gold nanoparticles

  • Shao Su
  • Haofan Sun
  • Fei Xu
  • Lihui Yuwen
  • Chunhai FanEmail author
  • Lianhui WangEmail author
Original Paper


An electrochemical glucose biosensor was developed by immobilizing glucose oxidase (GOx) on a glass carbon electrode that was modified with molybdenum disulfide (MoS2) nanosheets that were decorated with gold nanoparticles (AuNPs). The electrochemical performance of the modified electrode was investigated by cyclic voltammetry, and it is found that use of the AuNPs-decorated MoS2 nanocomposite accelerates the electron transfer from electrode to the immobilized enzyme. This enables the direct electrochemistry of GOx without any electron mediator. The synergistic effect the MoS2 nanosheets and the AuNPs result in excellent electrocatalytic activity. Glucose can be detected in the concentration range from 10 to 300 μM, and down to levels as low as 2.8 μM. The biosensor also displays good reproducibility and long-term stability, suggesting that it represents a promising tool for biological assays.


A MoS2-based glucose sensor has been prepared by gold nanoparticles-decorated MoS2 nanocomposite, which exhibited excellent electrocatalytic activity, reproducibility and long-term stability. It was applied to determine glucose concentration in human serum, suggest the sensor maybe promising for practical application.


Molybdenum disulfide Glucose oxidase Gold nanoparticles Direct electrochemistry Biosensors 



This work was financially supported by the National Basic Research Program of China (2012CB933301, 2009CB930600), the National Natural Science Foundation of China (21305070, 21204038, 81273409), the Ministry of Education of China (IRT1148, 20123223110007, 20133223120013), the Natural Science Foundation of Jiangsu Province (BK20130861), the Scientific Research Foundation of Nanjing University of Posts and Telecommunications (NY212033), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the Open Research Fund of State Key Laboratory of Bioelectronics, Southeast University.

Supplementary material

604_2014_1178_MOESM1_ESM.doc (294 kb)
ESM 1 (DOC 293 kb)


  1. 1.
    Wang J (2001) Glucose biosensors: 40 years of advances and challenges. Electroanalysis 13:983–988. doi: 10.1002/1521-4109(200108)13:12<983::AID-ELAN983>3.0.CO;2-# CrossRefGoogle Scholar
  2. 2.
    Wang J (2008) Electrochemical glucose biosensors. Chem Rev 108:814–825. doi: 10.1021/cr068123a CrossRefGoogle Scholar
  3. 3.
    Shan CS, Yang HF, Song JF, Han DX, Ivaska A, Niu L (2009) Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal Chem 81:2378–2382. doi: 10.1021/ac802193c CrossRefGoogle Scholar
  4. 4.
    Zhang SX, Wang N, Yu HJ, Niu YM, Sun CQ (2005) Covalent attachment of glucose oxidase to an Au electrode modified with gold nanoparticles for use as glucose biosensor. Bioelectrochem 67:15–22. doi: 10.1016/j.bioelechem.2004.12.002 CrossRefGoogle Scholar
  5. 5.
    Hrapovic S, Liu YL, Keith B, Luong JHT (2004) Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Anal Chem 76:1083–1088. doi: 10.1021/ac035143t CrossRefGoogle Scholar
  6. 6.
    Liu Y, Wang MK, Zhao F, Xu ZA, Dong SJ (2005) The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix. Biosens Bioelectron 21:984–988. doi: 10.1016/j.bios.2005.03.003 CrossRefGoogle Scholar
  7. 7.
    Tang YF, Allen BL, Kauffman DR, Star A (2009) Electrocatalytic activity of nitrogen-doped carbon nanotube cups. J Am Chem Soc 131:13200–13201. doi: 10.1021/ja904595t CrossRefGoogle Scholar
  8. 8.
    Zhou M, Zhai YM, Dong SJ (2009) Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal Chem 81:5603–5613. doi: 10.1021/ac900136z CrossRefGoogle Scholar
  9. 9.
    Chen D, Tang LH, Li JH (2010) Graphene-based materials in electrochemistry. Chem Soc Rev 39:3157–3180. doi: 10.1039/B923596E CrossRefGoogle Scholar
  10. 10.
    Su S, He Y, Song SP, Li D, Wang LH, Fan CH, Lee ST (2010) A silicon nanowire-based electrochemical glucose biosensor with high electrocatalytic activity and sensitivity. Nanoscale 2:1704–1707. doi: 10.1039/C0NR00314J CrossRefGoogle Scholar
  11. 11.
    Shao MW, Shan YY, Wong NB, Lee ST (2005) Silicon nanowire sensors for bioanalytical applications: glucose and hydrogen peroxide detection. Adv Funct Mater 15:1478–1482. doi: 10.1002/adfm.200500080 CrossRefGoogle Scholar
  12. 12.
    Wang JP, Thomas DF, Chen AC (2008) Nonenzymatic electrochemical glucose sensor based on nanoporous PtPb networks. Anal Chem 80:997–1004. doi: 10.1021/ac701790z CrossRefGoogle Scholar
  13. 13.
    Zhao M, Wu XM, Cai CX (2009) Polyaniline nanofibers: synthesis, characterization, and application to direct electron transfer of glucose oxidase. J Phys Chem C 113:4987–4996. doi: 10.1021/jp807621y CrossRefGoogle Scholar
  14. 14.
    Yu T, Lim B, Xia YN (2010) Aqueous-phase synthesis of single-crystal ceria nanosheets. Angew Chem Int Ed 49:4484–4487. doi: 10.1002/anie.201001521 CrossRefGoogle Scholar
  15. 15.
    Advanced Functional MaterialsBrugger T, Günther S, Wang B, Dil JH, Bocquet ML, Osterwalder J, Wintterlin J, Greber T (2009) Comparison of electronic structure and template function of single-layer graphene and a hexagonal boron nitride nanomesh on Ru (0001). Phys Rev B 79:045407. doi: 10.1103/PhysRevB.79.045407 CrossRefGoogle Scholar
  16. 16.
    Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7:699–712. doi: 10.1038/nnano.2012.193 CrossRefGoogle Scholar
  17. 17.
    Ramakrishna Matte HSS, Gomathi A, Manna AK, Late DJ, Datta R, Pati SK, Rao CNR (2012) MoS2 And WS2 analogues of graphene. Angew Chem Int Ed 122:4153–4156. doi: 10.1002/ange.201000009 CrossRefGoogle Scholar
  18. 18.
    Kibsgaard J, Chen ZB, Reinecke BN, Jaramillo TF (2012) Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat Mater 11:963–969. doi: 10.1038/nmat3439 CrossRefGoogle Scholar
  19. 19.
    Zong X, Wu GP, Yan HJ, Ma GJ, Shi JY, Wen FY, Wang L, Li C (2010) Photocatalytic H2 evolution on MoS2/CdS catalysts under visible light irradiation. J Phys Chem C 114:1963–1968. doi: 10.1021/jp904350e CrossRefGoogle Scholar
  20. 20.
    Hwang H, Kim H, Cho J (2011) MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett 11:4826–4830. doi: 10.1021/nl202675f CrossRefGoogle Scholar
  21. 21.
    Chang K, Chen W (2011) In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries. Chem Commun 47:4252–4254. doi: 10.1039/C1CC10631G CrossRefGoogle Scholar
  22. 22.
    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6:147–150. doi: 10.1038/nnano.2010.279 CrossRefGoogle Scholar
  23. 23.
    Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim CY, Galli G, Wang F (2010) Emerging photoluminescence in monolayer MoS2. Nano Lett 10:1271–1275. doi: 10.1021/nl903868w CrossRefGoogle Scholar
  24. 24.
    Yoon Y, Ganapathi K, Salahuddin S (2011) How good can monolayer MoS2 transistors be? Nano Lett 11:3768–3773. doi: 10.1021/nl2018178 CrossRefGoogle Scholar
  25. 25.
    Li H, Yin ZY, He QY, Huang X, Lu G, Fam DWH, Tok AIY, Zhang Q, Zhang H (2012) Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. Small 8:63–67. doi: 10.1002/smll.201101016 CrossRefGoogle Scholar
  26. 26.
    Wu SX, Zeng ZY, He QY, Wang ZY, Wang SJ, Du YP, Yin ZY, Sun XP, Chen W, Zhang H (2012) Electrochemically reduced single-layer MoS2 nanosheets: characterization, properties, and sensing applications. Small 8:2264–2270. doi: 10.1002/smll.201200044 CrossRefGoogle Scholar
  27. 27.
    Huang X, Zeng Z, Bao S, Wang M, Qi X, Fan Z, Zhang H (2013) Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat Commun 4:1444. doi: 10.1038/ncomms2472 CrossRefGoogle Scholar
  28. 28.
    Joensen P, Frindt RF, Morrison SR (1986) Single-layer MoS2. Mater Res Bull 21:457–461. doi: 10.1016/0025-5408(86)90011-5 CrossRefGoogle Scholar
  29. 29.
    Wang K, Liu Q, Guan QM, Wu J, Li HN, Yan JJ (2011) Enhanced direct electrochemistry of glucose oxidase and biosensing for glucose via synergy effect of graphene and CdS nanocrystals. Biosens Bioelectron 26:2252–2257. doi: 10.1016/j.bios.2010.09.043 CrossRefGoogle Scholar
  30. 30.
    Chen Y, Li Y, Sun D, Tian DB, Zhang JR, Zhu JJ (2011) Fabrication of gold nanoparticles on bilayer graphene for glucose electrochemical biosensing. J Mater Chem 21:7604–7611. doi: 10.1039/C1JM10293A CrossRefGoogle Scholar
  31. 31.
    Zhao S, Zhang K, Bai Y, Yang WW, Sun CQ (2006) Glucose oxidase/colloidal gold nanoparticles immobilized in Nafion film on glassy carbon electrode: direct electron transfer and electrocatalysis. Bioelectrochem 69:158–163. doi: 10.1016/j.bioelechem.2006.01.001 CrossRefGoogle Scholar
  32. 32.
    Shan CS, Yang HF, Han DX, Zhang QX, Ivaska A, Niu L (2010) Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing. Biosens Bioelectron 25:1070–1074. doi: 10.1016/j.bios.2009.09.024 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  1. 1.Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), and School of Materials Science and EngineeringNanjing University of Posts & TelecommunicationsNanjingChina
  2. 2.Division of Physical Biology, Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiPeople’s Republic of China

Personalised recommendations