Advertisement

Microchimica Acta

, Volume 181, Issue 7–8, pp 707–722 | Cite as

Conducting polymer composites with graphene for use in chemical sensors and biosensors

  • Wu Lei
  • Weimeng Si
  • Yujuan Xu
  • Zhenyan Gu
  • Qingli Hao
Review Article

Abstract

This review (with 79 references) summarizes the recent work on the development of chemical sensors and biosensors based on the use of composites made from conducting polymers (CPs) and graphene. Owing to the unique electrical, mechanical, optical, chemical and structural properties of CP and graphene, these kinds of composites have generated increasing interest in senor field. In this review, we first discuss methods for preparation of CP/GE composites by chemical, electrochemical, or physical methods including electrostatic interactions. We then cover aspects of the fabrication of modified electrodes and the performance of respective sensors with electrochemical, electronic or optical signal transduction. We then discuss sensors for the determination of inorganic and organic species, gases and vapors. We also review the state of the art in respective biosensors for hydrogen peroxide and glucose, for oligomers (DNA, RNA, and aptamers), for biogenic amines, NAD^+/NADH, cytochromes and the like, and in immunosensors. Finally, the perspective and current challenges of CP/GE composites for use in (bio)sensors are outlooked.

Figure

Conducting polymer composites with graphene have attracted increasing research interest in the modified electrodes for the application in chemical sensors and biosensors, due to the unique intrinsic properties of each component.

Keywords

Conducting polymers Graphene Composites Chemical sensors Biosensors 

Notes

Acknowledgments

This work was supported by the NSFC (No., 21103092), DFSR (No A2620110010), Program for NCET-12-0629, 863 Program (2013AA050905), the Fundamental Research Funds for the Central Universities (No.30920130111003), Qing Lan Project, and the Science and Technology Support Plan of Jiangsu Province (Nos. BE2011835, BE2013126), the Excellent Plan Foundation of NUST (2009).

References

  1. 1.
    Kochmann S, Hirsch T, Wolfbeis OS (2012) Graphenes in chemical sensors and biosensors. Trends Anal Chem 39:87–113CrossRefGoogle Scholar
  2. 2.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRefGoogle Scholar
  3. 3.
    Bunch JS, van der Zande AM, Verbridge SS, Frank IW, Tanenbaum DM, Parpia JM, Craighead HG, McEuen PL (2007) Electromechanical resonators from graphene sheets. Science 315:490–493CrossRefGoogle Scholar
  4. 4.
    Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008) Fine structure constant defines visual transparency of graphene. Science 320:1308–1308CrossRefGoogle Scholar
  5. 5.
    Park J, Ahn YH, RuizVargas C (2009) Imaging of photocurrent generation and collection in single-layer graphene. Nano Lett 9:1742–1746CrossRefGoogle Scholar
  6. 6.
    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191CrossRefGoogle Scholar
  7. 7.
    Pumera M (2009) Electrochemistry of graphene: new horizons for sensing and energy storage. Chem Rec 9:211–223CrossRefGoogle Scholar
  8. 8.
    Wu S, He Q, Tan C, Wang Y, Zhang H (2013) Graphene-based electrochemical sensors. Small 9:1160–1172CrossRefGoogle Scholar
  9. 9.
    Liu Y, Dong X, Chen P (2012) Biological and chemical sensors based on graphene materials. Chem Soc Rev 41:2283–2307CrossRefGoogle Scholar
  10. 10.
    Fan Y, Liu J, Yang C, Yu M, Liu P (2011) Graphene–polyaniline composite film modified electrode for voltammetric determination of 4-aminophenol. Sensors Actuators B Chem 157:669–674CrossRefGoogle Scholar
  11. 11.
    Hangarter CM, Chartuprayoon N, Hernandez SC, Choa Y, Myung NV (2013) Hybridized conducting polymer chemiresistive nano-sensors. Nano Today 8:39–55CrossRefGoogle Scholar
  12. 12.
    McQuade DT, Pullen AE, Swager TM (2000) Conjugated polymer-based chemical sensors. Chem Rev 100:2537–2574CrossRefGoogle Scholar
  13. 13.
    Lange U, Roznyatovskaya NV, Mirsky VM (2008) Conducting polymers in chemical sensors and arrays. Anal Chim Acta 614:1–26CrossRefGoogle Scholar
  14. 14.
    Hao Q, Kulikov V, Mirsky VM (2003) Investigation of contact and bulk resistance of conducting polymers by simultaneous two- and four-point technique. Sensors Actuators B Chem 94:352–357CrossRefGoogle Scholar
  15. 15.
    Hao Q, Wang X, Lu L, Yang X, Mirsky VM (2005) Electropolymerized multilayer conducting polymers with response to gaseous hydrogen chloride. Macromol Rapid Commun 26:1099–1103CrossRefGoogle Scholar
  16. 16.
    Wang H, Hao Q, Yang X, Lu L, Wang X (2009) Graphene oxide doped polyaniline for supercapacitors. Electrochem Commun 11:1158–1161CrossRefGoogle Scholar
  17. 17.
    Si W, Lei W, Zhang Y, Xia M, Wang F, Hao Q (2012) Electrodeposition of graphene oxide doped poly(3,4-ethylenedioxythiophene) film and its electrochemical sensing of catechol and hydroquinone. Electrochim Acta 85:295–301CrossRefGoogle Scholar
  18. 18.
    Zheng Z, Du Y, Feng Q, Wang Z, Wang C (2012) Facile method to prepare Pd/graphene–polyaniline nanocomposite and used as new electrode material for electrochemical sensing. J Mol Catal A Chem 353–354:80–86CrossRefGoogle Scholar
  19. 19.
    Devi R, Relhan S, Pundir CS (2013) Construction of a chitosan/polyaniline/graphene oxide nanoparticles/polypyrrole/Au electrode for amperometric determination of urinary/plasma oxalate. Sensors Actuators B Chem 186:17–26CrossRefGoogle Scholar
  20. 20.
    Nie T, Zhang O, Lu L, Xu J, Wen Y, Qiu X (2013) Facile synthesis of poly (3, 4-ethylenedioxythiophene)/graphene nanocomposite and its application for determination of nitrite. Int J Electrochem Sci 8:8708–8718Google Scholar
  21. 21.
    Sriprachuabwong C, Karuwan C, Wisitsorrat A, Phokharatkul D, Lomas T, Sritongkham P, Tuantranont A (2012) Inkjet-printed graphene-PEDOT:PSS modified screen printed carbon electrode for biochemical sensing. J Mater Chem 22:5478–5485CrossRefGoogle Scholar
  22. 22.
    Wang Q, Yun Y (2012) A nanomaterial composed of cobalt nanoparticles, poly (3, 4-ethylenedioxythiophene) and graphene with high electrocatalytic activity for nitrite oxidation. Microchim Acta 177:411–418CrossRefGoogle Scholar
  23. 23.
    Ye D, Luo L, Ding Y, Chen Q, Liu X (2011) A novel nitrite sensor based on graphene/polypyrrole/chitosan nanocomposite modified glassy carbon electrode. Analyst 136:4563–4569CrossRefGoogle Scholar
  24. 24.
    Zhu G, Wu L, Zhang X, Liu W, Zhang X, Chen J (2013) A new dual-signalling electrochemical sensing strategy based on competitive host–guest interaction of a β-cyclodextrin/poly(N-acetylaniline)/graphene-modified electrode: sensitive electrochemical determination of organic pollutants. Chem Eur J 19:6368–6373CrossRefGoogle Scholar
  25. 25.
    Radhapyari K, Kotoky P, Das MR, Khan R (2013) Graphene–polyaniline nanocomposite based biosensor for detection of antimalarial drug artesunate in pharmaceutical formulation and biological fluids. Talanta 111:47–53CrossRefGoogle Scholar
  26. 26.
    Lei W, Wu Q, Si W, Gu Z, Zhang Y, Deng J, Hao Q (2013) Electrochemical determination of imidacloprid using poly(carbazole)/chemically reduced graphene oxide modified glassy carbon electrode. Sensors Actuators B Chem 183:102–109CrossRefGoogle Scholar
  27. 27.
    Ameen S, Akhtar MS, Shin HS (2012) Hydrazine chemical sensing by modified electrode based on in situ electrochemically synthesized polyaniline/graphene composite thin film. Sensors Actuators B Chem 173:177–183CrossRefGoogle Scholar
  28. 28.
    Österholm A, Lindfors T, Kauppila J, Damlin P, Kvarnström C (2012) Electrochemical incorporation of graphene oxide into conducting polymer films. Electrochim Acta 83:463–470CrossRefGoogle Scholar
  29. 29.
    Zhang L, Li C, Liu A, Shi G (2012) Electrosynthesis of graphene oxide/polypyrene composite films and their applications for sensing organic vapors. J Mater Chem 22:8438–8443CrossRefGoogle Scholar
  30. 30.
    Bai H, Sheng K, Zhang P, Li C, Shi G (2011) Graphene oxide/conducting polymer composite hydrogels. J Mater Chem 21:18653–18658CrossRefGoogle Scholar
  31. 31.
    AlMashat L, Shin K, Kalantarzadeh K, Plessis JD, Han SH, Kojima RW, Kaner RB, Li D, Gou X, Ippolito SJ, Wlodarski W (2010) Graphene/polyaniline nanocomposite for hydrogen sensing. J Phys Chem C 114:16168–16173CrossRefGoogle Scholar
  32. 32.
    Jang W, Yun J, Kim H, Lee Y (2013) Improvement of ammonia sensing properties of polypyrrole by nanocomposite with graphitic materials. Colloid Polym Sci 291:1095–1103CrossRefGoogle Scholar
  33. 33.
    Tien HN, Hur SH (2012) One-step synthesis of a highly conductive graphene–polypyrrole nanofiber composite using a redox reaction and its use in gas sensors. Phys Status Solidi R 6:379–381CrossRefGoogle Scholar
  34. 34.
    Huang X, Hu N, Gao R, Yu Y, Wang Y, Yang Z, Siu-Wai Kong E, Wei H, Zhang Y (2012) Reduced graphene oxide-polyaniline hybrid: preparation, characterization and its applications for ammonia gas sensing. J Mater Chem 22:22488–22495CrossRefGoogle Scholar
  35. 35.
    Qiu J, Shi L, Liang R, Wang G, Xia X (2012) Controllable deposition of a platinum nanoparticle ensemble on a polyaniline/graphene hybrid as a novel electrode material for electrochemical sensing. Chem Eur J 18:7950–7959CrossRefGoogle Scholar
  36. 36.
    Wang GX, Qian Y, Cao XX, Xia XH (2012) Direct electrochemistry of cytochrome c on a graphene/poly (3,4-ethylenedioxythiophene) nanocomposite modified electrode. Electrochem Commun 20:1–3CrossRefGoogle Scholar
  37. 37.
    Alwarappan S, Liu C, Kumar A, Li C-Z (2010) Enzyme-doped graphene nanosheets for enhanced glucose biosensing. J Phys Chem C 114:12920–12924CrossRefGoogle Scholar
  38. 38.
    Sheng Q, Wang M, Zheng J (2011) A novel hydrogen peroxide biosensor based on enzymatically induced deposition of polyaniline on the functionalized graphene–carbon nanotube hybrid materials. Sensors Actuators B Chem 160:1070–1077CrossRefGoogle Scholar
  39. 39.
    Xia QF, Huang YJ, Yang X, Li ZJ (2012) Preparation and its application of novel graphene/gold/functional conducting polymer/hydrogen peroxide biosensor. Acta Chim Sin 70:1315–1321Google Scholar
  40. 40.
    Yang H, Hua M, Chen S, Tsai R (2013) Reusable sensor based on high magnetization carboxyl-modified graphene oxide with intrinsic hydrogen peroxide catalytic activity for hydrogen peroxide and glucose detection. Biosens Bioelectron 41:172–179CrossRefGoogle Scholar
  41. 41.
    Li J, Liu S, Yu J, Lian W, Cui M, Xu W, Huang J (2013) Electrochemical immunosensor based on graphene-polyaniline composites and carboxylated graphene oxide for estradiol detection. Sensors Actuators B Chem 188:99–105CrossRefGoogle Scholar
  42. 42.
    Li R, Xia Q, Li Z, Sun X, Liu J (2013) Electrochemical immunosensor for ultrasensitive detection of microcystin-LR based on graphene-gold nanocomposite/functional conducting polymer/gold nanoparticle/ionic liquid composite film with electrodeposition. Biosens Bioelectron 44:235–240CrossRefGoogle Scholar
  43. 43.
    Zhou L, Li R, Li Z, Xia Q, Fang Y, Liu J (2012) An immunosensor for ultrasensitive detection of aflatoxin B1 with an enhanced electrochemical performance based on graphene/conducting polymer/gold nanoparticles/the ionic liquid composite film on modified gold electrode with electrodeposition. Sensors Actuators B Chem 174:359–365CrossRefGoogle Scholar
  44. 44.
    Du M, Yang T, Li X, Jiao K (2012) Fabrication of DNA/graphene/polyaniline nanocomplex for label-free voltammetric detection of DNA hybridization. Talanta 88:439–444CrossRefGoogle Scholar
  45. 45.
    Kwon OS, Park SJ, Hong J-Y, Han AR, Lee JS, Lee JS, Oh JH, Jang J (2012) Flexible FET-type VEGF aptasensor based on nitrogen-doped graphene converted from conducting polymer. ACS Nano 6:1486–1493CrossRefGoogle Scholar
  46. 46.
    Yang T, Li Q, Li X, Wang X, Du M, Jiao K (2013) Freely switchable impedimetric detection of target gene sequence based bioson synergistic effect of ERGNO/PANI nanocomposites. Biosens Bioelectron 42:415–418CrossRefGoogle Scholar
  47. 47.
    Bo Y, Yang H, Hu Y, Yao T, Huang S (2011) A novel electrochemical DNA biosensor based on graphene and polyaniline nanowires. Electrochim Acta 56:2676–2681CrossRefGoogle Scholar
  48. 48.
    Yang T, Li Q, Meng L, Wang X, Chen W, Jiao K (2013) Synchronous electrosynthesis of poly(xanthurenic acid)-reduced graphene oxide nanocomposite for highly sensitive impedimetric detection of DNA. ACS Appl Mater Interfaces 5:3495–3499CrossRefGoogle Scholar
  49. 49.
    Li Z, Huang Y, Chen L, Qin X, Huang Z, Zhou Y, Meng Y, Li J, Huang S, Liu Y, Wang W, Xie Q, Yao S (2013) Amperometric biosensor for NADH and ethanol based on electroreduced graphene oxide–polythionine nanocomposite film. Sensors Actuators B Chem 181:280–287CrossRefGoogle Scholar
  50. 50.
    Xing X, Liu S, Yu J, Lian W, Huang J (2012) Electrochemical sensor based on molecularly imprinted film at polypyrrole-sulfonated graphene/hyaluronic acid-multiwalled carbon nanotubes modified electrode for determination of tryptamine. Biosens Bioelectron 31:277–283CrossRefGoogle Scholar
  51. 51.
    Lu L, Zhang O, Xu J, Wen Y, Duan X, Yu H, Wu L, Nie T (2013) A facile one-step redox route for the synthesis of graphene/poly (3,4-ethylenedioxythiophene) nanocomposite and their applications in biosensing. Sensors Actuators B Chem 181:567–574CrossRefGoogle Scholar
  52. 52.
    Zhang J, Lei J, Pan R, Xue Y, Ju H (2010) Highly sensitive electrocatalytic biosensing of hypoxanthine based on functionalization of graphene sheets with water-soluble conducting graft copolymer. Biosens Bioelectron 26:371–376CrossRefGoogle Scholar
  53. 53.
    Liu S, Xing X, Yu J, Lian W, Li J, Cui M, Huang J (2012) A novel label-free electrochemical aptasensor based on graphene–polyaniline composite film for dopamine determination. Biosens Bioelectron 36:186–191CrossRefGoogle Scholar
  54. 54.
    Huang J, Lin Q, Zhang X, He X, Xing X, Lian W, Zuo M, Zhang Q (2011) Electrochemical immunosensor based on polyaniline/poly (acrylic acid) and Au-hybrid graphene nanocomposite for sensitivity enhanced detection of salbutamol. Food Res Int 44:92–97CrossRefGoogle Scholar
  55. 55.
    Du M, Yang T, Jiao K (2010) Immobilization-free direct electrochemical detection for DNA specific sequences based on electrochemically converted gold nanoparticles/graphene composite film. J Mater Chem 20:9253–9260CrossRefGoogle Scholar
  56. 56.
    Gopalan AI, Lee KP, Komathi S (2010) Bioelectrocatalytic determination of nitrite ions based on polyaniline grafted nanodiamond. Biosens Bioelectron 26:1638–1643CrossRefGoogle Scholar
  57. 57.
    Yao Y, Shiu K (2007) Low potential detection of glucose at carbon nanotube modified glassy carbon electrode with electropolymerized poly(toluidine blue O) film. Electrochim Acta 53:278–284CrossRefGoogle Scholar
  58. 58.
    Virji S, Kaner RB, Weiller BH (2006) Hydrogen sensors based on conductivity changes in polyaniline nanofibers. J Phys Chem B 110:22266–22270CrossRefGoogle Scholar
  59. 59.
    Hao Q, Wang H, Yang X, Lu L, Wang X (2011) Morphology-controlled fabrication of sulfonated graphene/polyaniline nanocomposites by liquid/liquid interfacial polymerization and investigation of their electrochemical properties. Nano Res 4:323–333CrossRefGoogle Scholar
  60. 60.
    Wang H, Hao Q, Yang X, Lu L, Wang X (2010) Effect of graphene oxide on the properties of its composite with polyaniline. ACS Appl Mater Interfaces 2:821–828CrossRefGoogle Scholar
  61. 61.
    Wang H, Hao Q, Yang X, Lu L, Wang X (2010) A nanostructured graphene/polyaniline hybrid material for supercapacitors. Nanoscale 2:2164–2170CrossRefGoogle Scholar
  62. 62.
    Xu Y, Wang Y, Liang J, Huang Y, Ma Y, Wan X, Chen Y (2009) A hybrid material of graphene and poly (3,4-ethyldioxythiophene) with high conductivity, flexibility, and transparency. Nano Res 2:343–348CrossRefGoogle Scholar
  63. 63.
    Manivel P, Dhakshnamoorthy M, Balamurugan A, Ponpandian N, Mangalaraj D, Viswanathan C (2013) Conducting polyaniline-graphene oxide fibrous nanocomposites: preparation, characterization and simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. RSC Adv 3:14428–14437CrossRefGoogle Scholar
  64. 64.
    Xu L, Liu Y, Neoh K, Kang E, Fu G (2011) Reduction of graphene oxide by aniline with its concomitant oxidative polymerization. Macromol Rapid Commun 32:684–688CrossRefGoogle Scholar
  65. 65.
    Zhang J, Yang H, Shen G, Cheng P, Zhang J, Guo S (2010) Reduction of graphene oxide vial-ascorbic acid. Chem Commun 46:1112–1114CrossRefGoogle Scholar
  66. 66.
    Dua V, Surwade SP, Ammu S, Agnihotra SR, Jain S, Roberts KE, Park S, Ruoff RS, Manohar SK (2010) All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angew Chem Int Ed 49:2154–2157CrossRefGoogle Scholar
  67. 67.
    Fan X, Peng W, Li Y, Li X, Wang S, Zhang G, Zhang F (2008) Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv Mater 20:4490–4493CrossRefGoogle Scholar
  68. 68.
    Zhuang Z, Li J, Xu R, Xiao (2011) Electrochemical detection of dopamine in the presence of ascorbic acid using overoxidized polypyrrole/graphene modified electrodes. Int J Electrochem Sci 6:2149–2161Google Scholar
  69. 69.
    Feng X, Li R, Ma Y, Chen R, Shi N, Fan Q, Huang W (2011) One-step electrochemical synthesis of graphene/polyaniline composite film and its applications. Adv Funct Mater 21:2989–2996CrossRefGoogle Scholar
  70. 70.
    Wang D, Li F, Zhao J, Ren W, Chen Z, Tan J, Wu Z, Gentle I, Lu GQ, Cheng H (2009) Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano 3:1745–1752CrossRefGoogle Scholar
  71. 71.
    Lindfors T, Österholm A, Kauppila J, Pesonen M (2013) Electrochemical reduction of graphene oxide in electrically conducting poly(3,4-ethylenedioxythiophene) composite films. Electrochim Acta. doi: 10.1016/j.electacta.2013.03.070 Google Scholar
  72. 72.
    Si P, Chen H, Kannan P, Kim D-H (2011) Selective and sensitive determination of dopamine by composites of polypyrrole and graphene modified electrodes. Analyst 136:5134–5138CrossRefGoogle Scholar
  73. 73.
    Bai H, Xu Y, Zhao L, Li C, Shi G (2009) Non-covalent functionalization of graphene sheets by sulfonated polyaniline. Chem Commun:1667–1669Google Scholar
  74. 74.
    Karim MR, Hatakeyama K, Matsui T, Takehira H, Taniguchi T, Koinuma M, Matsumoto Y, Akutagawa T, Nakamura T, Noro S (2013) Graphene oxide nanosheet with high proton conductivity. J Am Chem Soc 135:8097–8100CrossRefGoogle Scholar
  75. 75.
    Liu S, Tian J, Wang L, Luo Y, Sun X (2011) Production of stable aqueous dispersion of poly (3, 4-ethylenedioxythiophene) nanorods using graphene oxide as a stabilizing agent and their application for nitrite detection. Analyst 136:4898–4902CrossRefGoogle Scholar
  76. 76.
    Nguyen DT, Tran LD, Le Nguyen H, Nguyen BH, Van Hieu N (2011) Modified interdigitated arrays by novel poly(1,8-diaminonaphthalene)/carbon nanotubes composite for selective detection of mercury(II). Talanta 85:2445–2450CrossRefGoogle Scholar
  77. 77.
    Wei Y, Yang R, Liu J, Huang X (2013) Selective detection toward Hg(II) and Pb(II) using polypyrrole/carbonaceous nanospheres modified screen-printed electrode. Electrochim Acta 105:218–223CrossRefGoogle Scholar
  78. 78.
    Karuwan C, Sriprachuabwong C, Wisitsoraat A, Phokharatkul D, Sritongkham P, Tuantranont A (2012) Inkjet-printed graphene-poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) modified on screen printed carbon electrode for electrochemical sensing of salbutamol. Sensors Actuators B Chem 161:549–555CrossRefGoogle Scholar
  79. 79.
    Tatsumi H, Ueda T (2011) Ion transfer voltammetry of tryptamine, serotonin, and tryptophan at the nitrobenzene/water interface. J Electroanal Chem 655:180–183CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Wu Lei
    • 1
  • Weimeng Si
    • 1
  • Yujuan Xu
    • 1
  • Zhenyan Gu
    • 1
  • Qingli Hao
    • 1
  1. 1.School of Chemical EngineeringNanjing University of Science and TechnologyNanjingChina

Personalised recommendations