Advertisement

Microchimica Acta

, Volume 181, Issue 9–10, pp 829–851 | Cite as

Liquid phase microextraction of pesticides: a review on current methods

  • Mir Ali FarajzadehEmail author
  • Saeed Mohammad Sorouraddin
  • Mohammad Reza Afshar Mogaddam
Review Article

Abstract

Liquid phase microextraction (LPME) enables analytes to be extracted with a few microliters of an organic solvent. LPME is a technique for sample preparation that is extremely simple, affordable and virtually a solvent-free. It can provide a high degree of selectivity and enrichment by eliminating carry-over between single runs. A variety of solvents are known for the extraction of the various analytes. These features have led to the development of techniques such as single drop microextraction, hollow fiber LPME, dispersive liquid-liquid microextraction, and others. LPME techniques have been applied to the analysis of pharmaceuticals, food, beverages, and pesticides. This review covers the history of LPME methods, and then gives a comprehensive collection of their application to the preconcentration and determination of pesticides in various matrices. Specific sections cover (a) sample treatment techniques in general, (b) single-drop microextraction, (c) extraction based on the use of ionic liquids, (d) solidified floating organic drop microextraction, and various other techniques. Contains 149 references.

Figure

This review covers the history of LPME methods, and then gives a comprehensive collection of their application to the preconcentration and determination of pesticides in various matrices. Specific sections cover sample treatment techniques in general, single-drop microextraction, extraction based on the use of ionic liquids, solidified floating organic drop microextraction, and various other techniques.

Keywords

Liquid phase microextraction Single drop microextraction Hollow fiber liquid phase microextraction Dispersive liquid-liquid microextraction Pesticides 

References

  1. 1.
    Beyer A, Biziuk M (2007) Methods of determination of residues of pesticides and polychlorinated biphenyls in food sample. Ecol Chem Eng 14:35–38. doi: 10.1080/10408390701761878 Google Scholar
  2. 2.
    Sudo M, Kawachi T, Hida Y, Kunimatsu T (2004) Spatial distribution and seasonal changes of pesticides in Lake Biwa, Japan. Limnology 5:77–86. doi: 10.1007/s10201-003-0115-0 Google Scholar
  3. 3.
    Lebel G, Dodin S, Ayotte P, Marcoux S, Ferron LA, Dewailly E (1998) Organochlorine exposure and the risk of endometriosis. Fertil Steril 69:221–228. doi: 10.1016/S0015-0282(97)00479-2 Google Scholar
  4. 4.
    Ahmed FE (2001) Analysis of pesticides and their metabolites in foods and drinks. Trends Anal Chem 20:649–661. doi: 10.1016/S0165-9936(01)00121-2 Google Scholar
  5. 5.
    Albero B, Sánchez-Brunete C, Tadeo JL (2005) Multiresidue determination of pesticides in juice by solid-phase extraction and gas chromatography–mass spectrometry. Talanta 66:917–924. doi: 10.1016/j.talanta.2004.12.046 Google Scholar
  6. 6.
    Soler C, Pico Y (2007) Recent trends in liquid chromatography–tandem mass spectrometry to determine pesticides and their metabolites in food. Trends Anal Chem 26:103–115. doi: 10.1016/j.trac.2006.08.005 Google Scholar
  7. 7.
    Zambonin CG, Quinto M, Vietro ND, Palmisano F (2004) Solid-phase microextraction-gas chromatography–mass spectrometry: a fast and simple screening method for the assessment of organophosphorus pesticides residues in wine and fruit juices. Food Chem 86:269–274. doi: 10.1016/j.foodchem.2003.09.025 Google Scholar
  8. 8.
    Liu LB, Hashi Y, Qin YP, Zhou HX, Lin JM (2007) Development of automated online gel permeation chromatography-gas chromatograph mass spectrometry for measuring multiresidual pesticides in agricultural products. J Chromatogr B 845:61–68. doi: 10.1016/j.jchromb.2006.07.032 Google Scholar
  9. 9.
    Torres CM, Pico Y, Manes J (1996) Determination of pesticide residues in fruit and vegetables. J Chromatogr A 754:301–331. doi: 10.1016/S0021-9673(96)00407-4 Google Scholar
  10. 10.
    Namiesnik J, Gorecki T (2001) Preparation of environmental samples for the determination of trace constituents. Pol J Environ Stud 10:77–84Google Scholar
  11. 11.
    Kataoka H (2003) New trends in sample preparation for clinical and pharmaceutical analysis. Trends Anal Chem 22:232–244Google Scholar
  12. 12.
    Ridgway K, Lalljie SPD, Smith RM (2007) Sample preparation techniques for the determination of trace residues and contaminants in foods. J Chromatogr A 1153:36–53. doi: 10.1016/j.chroma.2007.01.134 Google Scholar
  13. 13.
    Fontanals N, Maree RM, Borrull F (2007) New materials in sorptive extraction techniques for polar compounds. J Chromatogr A 1152:14–31. doi: 10.1016/j.chroma.2006.11.077 Google Scholar
  14. 14.
    Puig P, Borrull F, Calull M, Aguilar C (2008) Sorbent preconcentration procedures coupled to capillary electrophoresis for environmental and biological applications. Anal Chim Acta 616:1–18. doi: 10.1016/j.aca.2008.03.062 Google Scholar
  15. 15.
    Tahboub YR, Zaater MF, Al-Talla ZA (2005) Determination of the limits of identification and quantitation of selected organochlorine and organophosphorous pesticide residues in surface water by full-scan gas chromatography/mass spectrometry. J Chromatogr A 1098:150–155. doi: 10.1016/j.chroma.2005.08.064 Google Scholar
  16. 16.
    Lepom P, Brown B, Hanke G, Loos R, Quevauviller P, Wollgast J (2009) Needs for reliable analytical methods for monitoring chemical pollutants in surface water under the European Water Framework Directive. J Chromatogr A 1216:302–315. doi: 10.1016/j.chroma.2008.06.017 Google Scholar
  17. 17.
    Mahara BM, Borossay J, Torkos K (1998) Liquid-liquid extraction for sample preparation prior to gas chromatography and gas chromatography–mass spectrometry, determination of herbicide and pesticide compounds. Microchem J 58:31–38. doi: 10.1006/mchj.1997.1517 Google Scholar
  18. 18.
    ISO 10301:1997-Water quality. Determination of highly volatile halogenated hydrocarbons. Gas-chromatographic methodsGoogle Scholar
  19. 19.
    Franson MAH, Greenberg AE, Eaton ED (1998) Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DCGoogle Scholar
  20. 20.
    EN 12918:1999-Water quality. Determination of parathion, methyl-parathion and some other organophosphorus in water by dichloromethane extraction and gas chromatographic analysisGoogle Scholar
  21. 21.
    Fuoco R, Giannarelli S, Wei Y, Ceccarini A, Abete C, Francesconi S, Termine M (2009) Persistent organic pollutants (POPs) at Ross Sea (Antarctica). Microchem J 92:44–48. doi: 10.1016/j.microc.2008.11.004 Google Scholar
  22. 22.
    Mamun MIR, Park JH, Choi JH, Kim HK, Choi WJ, Han SS, Hwang K, Jang NI, Assayed ME, El-Dib MA, Shin HC, Abd El-Aty AM, Shim JH (2009) Development and validation of a multiresidue method for determination of 82 pesticides in water using GC. J Sep Sci 32:559–574. doi: 10.1002/jssc.200800606 Google Scholar
  23. 23.
    Hatrik S, Tekel J (1996) Extraction methodology and chromatography for the determination of residual pesticides in water. J Chromatogr A 733:217–233. doi: 10.1016/0021-9673(95)00725-3 Google Scholar
  24. 24.
    Marvin CH, Brindle ID, Hall CD, Chiba M (1992) Development of an automated high-performance liquid chromatographic method for the on-line pre-concentration and determination of trace concentrations of pesticides in drinking water. J Chromatogr A 503:167–176. doi: 10.1016/S0021-9673(01)81498-9 Google Scholar
  25. 25.
    Ravelo-Pérez LM, Hernández-Borges J, Rodríguez-Delgado MA (2008) Multiwalled carbon nanotubes as efficient solid-phase extraction materials of organophosphorous pesticides form apple, grape, orange and pineapple fruit juices. J Chromatogr A 1211:33–42. doi: 10.1016/j.chroma.2008.09.084 Google Scholar
  26. 26.
    Martinez RC, Gonzalo ER, Amigo Moran MJ, Mendez JH (1992) Sensitive method for the determination of organophosphorus pesticides in fruits and surface waters by high-performance liquid chromatography with ultraviolet detection. J Chromatogr A 607:37–45. doi: 10.1016/0021-9673(92)87052-A Google Scholar
  27. 27.
    Topuz S, Özhan G, Alpertunga B (2005) Simultaneous determination of various pesticides in fruit juices by HPLC-DAD. Food Control 16:87–92. doi: 10.1016/j.foodcont.2003.11.012 Google Scholar
  28. 28.
    Arthur CL, Pawliszyn J (1990) Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal Chem 62:2145–2148. doi: 10.1021/ac00218a019 Google Scholar
  29. 29.
    Valor I, Perez M, Cortada C, Apraiz D, Molto JC, Font G (2001) SPME of 52 pesticides and polychlorinated biphenyls: extraction efficiencies of the SPME coatings polydimethylsiloxane, polyacrylate, polydimethylsiloxane-divinylbenzene, carboxen-polydimethylsiloxane and carbowax-divinylbenzene. J Sep Sci 24:39–48. doi: 10.1002/1615-9314(20010101)24:1<39::AID-JSSC39>3.0.CO;2-2 Google Scholar
  30. 30.
    Vázquez PP, Mughari AR, Galera MM (2008) Solid-phase microextraction for the determination of benzoylureas in orange juice using liquid chromatography combined with post-column photochemically induced fluorimetry derivatization and fluorescence detection. J Sep Sci 31:56–63. doi: 10.1002/jssc.200700289 Google Scholar
  31. 31.
    Djozan DJ, Farajzadeh MA, Sorouraddin SM, Baheri T, Norouzi J (2012) Inside-needle extraction method based on molecularly imprinted polymer for solid-phase dynamic extraction and preconcentration of triazine herbicides followed by GC-FID determination. Chromatographia 75:139–148. doi: 10.1007/s10337-011-2173-5 Google Scholar
  32. 32.
    Dömötörová M, Matisováa E (2008) Fast gas chromatography for pesticide residues analysis. J Chromatogr A 1207:1–16. doi: 10.1016/j.chroma.2008.08.063 Google Scholar
  33. 33.
    Sarafraz-Yazdi A, Amiri A (2010) Liquid-phase microextraction. Trends Anal Chem 29:1–14. doi: 10.1016/j.trac.2009.10.003 Google Scholar
  34. 34.
    Ho TS, Pedersen-Bjergaard S, Rasmussen KE (2002) Recovery, enrichment and selectivity in liquid-phase microextraction, comparison with conventional liquid-liquid extraction. J Chromatogr A 963:3–17. doi: 10.1016/S0021-9673(02)00215-7 Google Scholar
  35. 35.
    Lambropoulou DA, Albanis TA (2007) Liquid-phase microextraction techniques in pesticide residue analysis. J Biochem Biophys Methods 70:195–228. doi: 10.1016/j.jbbm.2006.10.004 Google Scholar
  36. 36.
    Xu L, Basheer C, Lee HK (2007) Developments in single-drop microextraction. J Chromatogr A 1152:184–192. doi: 10.1016/S0165-9936(01)00126-1 Google Scholar
  37. 37.
    Pakade YB, Tewary DK (2010) Development and applications of single-drop microextraction for pesticide residue analysis. J Sep Sci 33:3683–3691. doi: 10.1002/jssc.201000331 Google Scholar
  38. 38.
    Jeannot MA, Przyjazny A, Kokosa JM (2010) Single drop microextraction—development, applications and future trends. J Chromatogr A 1217:2326–2336. doi: 10.1016/j.chroma.2009.10.089 Google Scholar
  39. 39.
    Rasmussen KE, Pedersen-Bjergaard S (2004) Developments in hollow fibre-based liquid-phase microextraction. Trends Anal Chem 23:1–10. doi: 10.1016/S0165-9936(04)00105-0 Google Scholar
  40. 40.
    Lee J, Lee HK, Rasmussen KE, Pedersen-Bjergaard S (2008) Environmental and bioanalytical applications of hollow fiber membrane liquid-phase microextraction. Anal Chim Acta 624:253–268. doi: 10.1016/j.aca.2008.06.050 Google Scholar
  41. 41.
    Zang XH, Wu QH, Zhang MY, Xi GH, Wang Z (2009) Developments of dispersive liquid-liquid microextraction technique. J Anal Chem 37:161–168. doi: 10.1016/S1872-2040(08)60082-1 Google Scholar
  42. 42.
    Rezaee M, Yamini Y, Faraji M (2010) Evolution of dispersive liquid-liquid microextraction method. J Chromatogr A 1217:2342–2357. doi: 10.1016/j.chroma.2009.11.088 Google Scholar
  43. 43.
    Anthemidis AN, Ioannou KIG (2009) Recent developments in homogeneous and dispersive liquid–liquid extraction for inorganic elements determination. Talanta 80:413–421. doi: 10.1016/j.talanta.2009.09.005 Google Scholar
  44. 44.
    Xu L, Basheer C, Lee HK (2009) Chemical reactions in liquid-phase microextractionn. J Chromatogr A 1216:701–707. doi: 10.1016/j.chroma.2008.10.005 Google Scholar
  45. 45.
    Ojeda CB, Rojas FS (2009) Separation and preconcentration by dispersive liquid-liquid microextraction procedure. Chromatographia 69:1–11. doi: 10.1365/s10337-009-1104-1 Google Scholar
  46. 46.
    Psillakis E, Kalogerakis N (2002) Developments in single-drop microextraction. Trends Anal Chem 21:54–64. doi: 10.1016/S0165-9936(01)00126-1 Google Scholar
  47. 47.
    Pedersen-Bjergaard S, Rasmussen KE (2008) Liquid-phase microextraction with porous hollow fibers, a miniaturized and highly flexible format for liquid-liquid extraction. J Chromatogr A 1184:132–142. doi: 10.1016/j.chroma.2007.08.088 Google Scholar
  48. 48.
    Nagaraju D, Huang SD (2007) Determination of triazine herbicides in aqueous samples by dispersive liquid-liquid microextraction with gas chromatography-ion trap mass spectrometry. J Chromatogr A 1161:89–97. doi: 10.1016/j.chroma.2007.05.065 Google Scholar
  49. 49.
    López-Blanco MC, Blanco-Cid S, Cancho-Grande B, Simal-Gándara J (2003) Application of single-drop microextraction and comparison with solid-phase microextraction and solid-phase extraction for the determination of α- and β-endosulfan in water samples by gas chromatography-electron-capture detection. J Chromatogr A 984:245–252. doi: 10.1016/S0021-9673(02)01873-3 Google Scholar
  50. 50.
    Tobiszewski M, Mechlinska A, Zygmunt B, Namiesnik J (2009) Green analytical chemistry in sample preparation for determination of trace organic pollutants. TrAC Trends Anal Chem 28:943–951. doi: 10.1016/j.trac.2009.06.001 Google Scholar
  51. 51.
    Jeannot MA, Cantwell FF (1997) Solvent microextraction as a speciation tool: determination of free progesterone in a protein solution. Anal Chem 69:2935–2940. doi: 10.1021/ac970207j Google Scholar
  52. 52.
    Colombini V, Bancon-Montigny C, Yang L, Maxwell P, Sturgeon RE, Mester Z (2004) Headspace single-drop microextraction for the detection of organotin compounds. Talanta 63:555–560. doi: 10.1016/j.talanta.2003.11.035 Google Scholar
  53. 53.
    Przyjazny A, Kokosa JM (2002) Analytical characteristics of the determination of benzene, toluene, ethylbenzene and xylenes in water by headspace solvent microextraction. J Chromatogr A 977:143–153Google Scholar
  54. 54.
    Kokosa JM, Przyjazny A (2003) Headspace microdrop analysis-an alternative test method for gasoline diluent and benzene, toluene, ethylbenzene and xylenes in used engine oils. J Chromatogr A 983:205–214. doi: 10.1155/2013/380705 Google Scholar
  55. 55.
    Yamini Y, Hosseini MH, Hojaty M, Arab J (2004) Headspace solvent microextraction: a new method applied to the pre-concentration of 2-butoxyethanol from aqueous solutions into a single microdrop. J Chromatogr Sci 42:32–36. doi: 10.1016/j.talanta.2003.07.012 Google Scholar
  56. 56.
    Li N, Deng C, Yao N, Shen X, Zhang X (2005) Determination of acetone, hexanal and heptanal in blood samples by derivatization with pentafluorobenzyl hydroxylamine followed by headspace single-drop microextraction and gas chromatography–mass spectrometry. Anal Chim Acta 540:317–323. doi: 10.1016/j.aca.2005.03.047 Google Scholar
  57. 57.
    Zhang J, Su T, Lee HK (2005) Headspace water-based liquid-phase microextraction. Anal Chem 77:1988–1992. doi: 10.1021/ac040129h Google Scholar
  58. 58.
    De Jager LS, Andrews AR (2000) Development of a rapid screening technique for organochlorine pesticides using solvent microextraction (SME) and fast gas chromatography (GC). Analyst 125:1943–1948Google Scholar
  59. 59.
    Council Directive 98/83/EC of 3 November 1998 on the quality of water intented for human consumption (Official Journal L 330, 05/12/1998), p 32–45Google Scholar
  60. 60.
    Bagheri H, Khalilian F (2005) Immersed solvent microextraction and gas chromatography–mass spectrometric detection of s-triazine herbicides in aquatic media. Anal Chim Acta 537:81–87. doi: 10.1016/j.aca.2005.01.036 Google Scholar
  61. 61.
    Liang P, Guo L, Liu Y, Liu S, Zhang TZ (2005) Application of liquid-phase microextraction for the determination of phoxim in water samples by high performance liquid chromatography with diode array detection e array detector. Microchem J 80:19–23. doi: 10.1016/j.microc.2004.07.004 Google Scholar
  62. 62.
    Lopez-Blanco C, Gomez-Alvarez S, Rey-Garrote M, Cancho-Grande B, Simal-Gandara J (2005) Determination of carbamates and organophosphorus pesticides by SDME-GC in natural water. Anal Bioanal Chem 383:557–561. doi: 10.1007/s00216-005-0038-1 Google Scholar
  63. 63.
    Zhao EC, Han LJ, Jiang SR, Wang QX, Zhou ZQ (2006) Application of a single-drop microextraction for the analysis of organophosphorus pesticides in juice. J Chromatogr A 1114:269–273. doi: 10.1016/j.chroma.2006.03.011 Google Scholar
  64. 64.
    Xiao Q, Hu B, Yu C, Xia L, Jiang Z (2006) Optimization of a single-drop microextraction procedure for the determination of organophosphorus pesticides in water and fruit juice with gas chromatography-flame photometric detection. Talanta 69:848–855. doi: 10.1016/j.talanta.2005.11.024 Google Scholar
  65. 65.
    Liu Y, Zhao E, Zhou Z (2006) Single-drop microextraction and gas chromatographic determination of fungicide in water and wine samples. Anal Lett 39:2333–2344. doi: 10.1080/00032710600755843 Google Scholar
  66. 66.
    Zhao EC, Shan WL, Jiang SR, Liu Y, Zhou ZQ (2006) Determination of the chloroacetanilide herbicides in waters using single-drop microextraction and gas chromatography. Microchem J 83:105–110. doi: 10.1016/j.microc.2006.03.008 Google Scholar
  67. 67.
    Ahmadi F, Assadi Y, Milani Hosseini SMR, Rezaee M (2006) Determination of organophosphorus pesticides in water samples by single drop microextraction and gas chromatography-flame photometric detector. J Chromatogr A 1101:307–312. doi: 10.1016/j.chroma.2005.11.017 Google Scholar
  68. 68.
    Martendal E, Budziak D, Carasek E (2007) Application of fractional factorial experimental and Box-Bhnken designs for optimization of single-drop microextraction of 2,4,6-trichloroanisole and 2,4,6-tribromoanisole from wine samples. J Chromatogr A 1148:131–136. doi: 10.1016/j.chroma.2006.03.011 Google Scholar
  69. 69.
    Saraji M, Esteki N (2008) Analysis of carbamate pesticides in water samples using single-drop microextraction and gas chromatography–mass spectrometry. Anal Bioanal Chem 391:1091–1100. doi: 10.1007/s00216-008-2087-8 Google Scholar
  70. 70.
    Barrio CS, Asensio JS, Bernal JG (1994) GC-NPD investigation of the recovery of organonitrogen and organophosphorus pesticides from apple samples: the effect of the extraction solvent. Chromatographia 39:320–324. doi: 10.1007/BF02274520 Google Scholar
  71. 71.
    Gou Y, Eisert R, Pawliszyn J (2000) Automated in-tube solid-phase microextraction-high-performance liquid chromatography for carbamate pesticide analysis. J Chromatogr A 873:137–147. doi: 10.1016/S0021-9673(99)01125-5 Google Scholar
  72. 72.
    Gou Y, Pawliszyn J (2000) In-tube solid-phase microextraction coupled to capillary LC for carbamate analysis in water samples. Anal Chem 72:2774–2779. doi: 10.1021/ac990726h Google Scholar
  73. 73.
    Zhang J, Lee HK (2006) Application of liquid-phase microextraction and on-column derivatization combined with gas chromatography–mass spectrometry to the determination of carbamate pesticides. J Chromatogr A 1117:31–37. doi: 10.1016/j.chroma.2006.03.102 Google Scholar
  74. 74.
    Zhang M, Huang J, Wei C, Yu B, Yang X, Chen X (2008) Mixed liquids for single-drop microextraction of organochlorine pesticides in vegetables. Talanta 74:599–604. doi: 10.1016/j.talanta.2007.06.041 Google Scholar
  75. 75.
    Saraji M, Bahman F (2008) Application of single-drop microextraction combined with in-microvial derivatization for determination of acidic herbicides in water samples by gas chromatography–mass spectrometry. J Chromatogr A 1178:17–23. doi: 10.1016/j.chroma.2007.11.056 Google Scholar
  76. 76.
    Chen H, Chen R, Feng R, Li S (2009) Simultaneous analysis of carbamate and organophosphorus pesticides in water by single-drop microextraction coupled with GC-MS. Chromatographia 70:165–172. doi: 10.1365/s10337-009-1154-4 Google Scholar
  77. 77.
    Pinheiro AS, Andrade JB (2009) Development, validation and application of a SDME/GC-FID methodology for the multiresidue determination of organophosphate and pyrethroid pesticides in water. Talanta 79:1354–1359. doi: 10.1016/j.talanta.2009.06.002 Google Scholar
  78. 78.
    He Y, Lee HK (2006) Continuous flow microextraction combined with high-performance liquid chromatography for the analysis of pesticides in natural waters. J Chromatogr A 1122:7–12. doi: 10.1016/j.chroma.2006.04.078 Google Scholar
  79. 79.
    Zhao L, Lee HK (2001) Application of static liquid-phase microextraction to the analysis of organochlorine pesticides in water. J Chromatogr A 919:381–388. doi: 10.1016/S0021-9673(01)00816-0 Google Scholar
  80. 80.
    Cortada C, Vidal L, Tejada S, Romo A, Canals A (2009) Determination of organochlorine pesticides in complex matrices by single-drop microextraction coupled to gas chromatography–mass spectrometry. Anal Chim Acta 638:29–35. doi: 10.1016/j.aca.2009.01.062 Google Scholar
  81. 81.
    Amvrazi EG, Tsiropoulos NG (2009) Application of single-drop microextraction coupled with gas chromatography for the determination of multiclass pesticides in vegetables with nitrogen phosphorus and electron capture detection. J Chromatogr A 1216:2789–2797. doi: 10.1016/j.chroma.2008.07.070 Google Scholar
  82. 82.
    Chen PS, Huang SP, Fuh MR, Huang SD (2009) Determination of organochlorine pesticides in water using dynamic hook-type liquid-phase microextraction. Anal Chim Acta 647:177–181. doi: 10.1016/j.aca.2009.06.018 Google Scholar
  83. 83.
    Garbi A, Sakkas V, Fiamegos YC, Stalikas CD, Albanis T (2010) Sensitive determination of pesticides residues in wine samples with the aid of single-drop microextraction and response surface methodology. Talanta 82:1286–1291. doi: 10.1016/j.talanta.2010.06.046 Google Scholar
  84. 84.
    Viñas P, Martínez-Castillo N, Campillo N, Hernández-Córdoba M (2010) Liquid-liquid microextraction methods based on ultrasound-assisted emulsification and single-drop coupled to gas chromatography–mass spectrometry for determining strobilurin and oxazole fungicides in juices and fruits. J Chromatogr A 1217:6569–6577. doi: 10.1016/j.chroma.2010.08.046 Google Scholar
  85. 85.
    Fernandes VC, Subramanian V, Mateus N, Domingues VF, Delerue-Matos C (2012) The development and optimization of a modified single-drop microextraction method for organochlorine pesticides determination by gas chromatography-tandem mass spectrometry. Microchim Acta 178:195–202. doi: 10.1007/s00604-012-0810-9 Google Scholar
  86. 86.
    Salemi A, Rasoolzadeh R, Nejad MM, Vosough M (2013) Ultrasonic assisted headspace single drop microextraction and gas chromatography with nitrogen-phosphorus detector for determination of organophosphorus pesticides in soil. Anal Chim Acta 769:121–126. doi: 10.1016/j.aca.2013.01.054 Google Scholar
  87. 87.
    Pedersen-Bjergaard S, Rasmussen KE (1999) Liquid-liquid-liquid microextraction for sample preparation of biological fluids prior to capillary electrophoresis. Anal Chem 71:2650–2656. doi: 10.1021/ac990055n Google Scholar
  88. 88.
    Basheer C, Lee HK, Obbard JP (2002) Determination of organochlorine pesticides in seawater using liquid-phase hollow fiber membrane microextraction and gas chromatography–mass spectrometry. J Chromatogr A 968:191–199. doi: 10.1016/S0021-9673(02)00793-8 Google Scholar
  89. 89.
    Hou L, Lee HK (2004) Determination of pesticides in soil by liquid phase microextraction and gas chromatography–mass spectrometry. J Chromatogr A 1038:37–42. doi: 10.1016/j.chroma.2004.03.012 Google Scholar
  90. 90.
    Pan HJ, Ho WH (2004) Determination of fungicides in water using liquid phase microextraction and gas chromatography with electron capture detection. Anal Chim Acta 527:61–67. doi: 10.1016/j.aca.2004.08.016 Google Scholar
  91. 91.
    Lambropoulou DA, Albanis TA (2005) Application of hollow fiber liquid phase microextraction for the determination of insecticides in water. J Chromatogr A 1072:55–61. doi: 10.1016/j.chroma.2004.11.076 Google Scholar
  92. 92.
    Yao Z, Jiang G, Liu J, Cheng W (2001) Application of solid-phase microextraction for the determination of organophosphorous pesticides in aqueous samples by gas chromatography with flame photometric detector. Talanta 55:807–814. doi: 10.1016/S0039-9140(01)00504-5 Google Scholar
  93. 93.
    Beltran J, Lopez FJ, Cepria O, Hernandez F (1998) Solid-phase microextraction for quantitative analysis of organophosphorus pesticides in environmental water samples. J Chromatogr A 808:257–263. doi: 10.1016/S0021-9673(98)00138-1 Google Scholar
  94. 94.
    Choudhury TK, Gerhardt KO, Mawhinney TP (1996) Solid-phase microextraction of nitrogen- and phosphorus-containing pesticides from water and gas chromatographic analysis. Environ Sci Technol 30:3259–3265. doi: 10.1021/es960040w Google Scholar
  95. 95.
    Chen PS, Huang SD (2006) Determination of ethoprop, diazinon, disulfoton and fenthion using dynamic hollow fiber-protected liquid-phase microextraction coupled with gas chromatography–mass spectrometry. Talanta 69:669–675. doi: 10.1016/j.talanta.2005.10.042 Google Scholar
  96. 96.
    Wu J, Lee HK (2006) Injection port derivatization following ion pair hollow fiber-protected liquid-phase microextraction for determining acidic herbicides by gas chromatography/mass spectrometry. Anal Chem 78:7292–7301. doi: 10.1021/ac060966e Google Scholar
  97. 97.
    Basheer C, Alnedhary AA, Rao BSM, Lee HK (2007) Determination of organophosphorous pesticides in wastewater samples using binary-solvent liquid-phase microextraction and solid-phase microextraction: a comparative study. Anal Chim Acta 605:147–152. doi: 10.1016/j.aca.2007.10.006 Google Scholar
  98. 98.
    Hylton K, Mitra S (2007) Barrier film protected, and mixed solvent optimized microscale membrane extraction of methyl carbamate pesticides. J Chromatogr A 1154:60–65. doi: 10.1016/j.chroma.2007.03.131 Google Scholar
  99. 99.
    Yang X, Wang Z, Wang C, Han D, Chen Y, Song S (2007) Determination of carbamates pesticides in reservoir water by hollow fiber-based liquid-phase microextraction coupled with high performance liquid chromatography. Se Pu 25:362–366Google Scholar
  100. 100.
    Berhanu T, Megersa N, Solomon T, Jonsson JA (2008) A novel equilibrium extraction technique employing hollow fiber liquid phase microextraction for trace enrichment of freely dissolved organophosphorus pesticides in environmental waters. Intern J Environ Anal Chem 88:933–945. doi: 10.1080/03067310802357803 Google Scholar
  101. 101.
    Sanagi MM, Abidin NAZ, Ibrahim WAW, Aboul-Enein HY (2010) Application of double-phase liquid phase microextraction in the determination of partition coefficients and analysis of pesticides in water samples. Chromatographia 71:461–467. doi: 10.1365/s10337-010-1475-3 Google Scholar
  102. 102.
    Raharjo Y, Sanagi MM, Ibrahim WAW, Naim AA, Aboul-Enein HY (2009) Application of continual injection liquid-phase microextraction method coupled with liquid chromatography to the analysis of organophosphorus pesticides. J Sep Sci 32:623–629. doi: 10.1002/jssc.200800566 Google Scholar
  103. 103.
    Trtić-Petrović T, Ðorđević J, Dujaković N, Kumrić K, Vasiljević T, Laušević M (2010) Determination of selected pesticides in environmental water by employing liquid-phase microextraction and liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 397:2233–2243. doi: 10.1007/s00216-010-3725-5 Google Scholar
  104. 104.
    González-Curbelo MÁ, Hernández-Borges J, Borges-Miquel TM, Rodríguez-Delgado MÁ (2013) Determination of organophosphorus pesticides and metabolites in cereal-based baby foods and wheat flour by means of ultrasound-assisted extraction and hollow-fiber liquid-phase microextraction prior to gas chromatography with nitrogen phosphorus detection. J Chromatogr A. doi: 10.1016/j.chroma.2013.05.081 Google Scholar
  105. 105.
    Rezaee M, Assadi Y, Milani Hosseini MR, Aghaee E, Ahmadi F, Berijani S (2006) Determination of organic compounds in water using dispersive liquid-liquid microextraction. J Chromatogr A 1116:1–9. doi: 10.1016/j.chroma.2006.03.007 Google Scholar
  106. 106.
    Berijani S, Assadi Y, Anbia M, Milani Hosseini MR, Aghaee E (2006) Dispersive liquid-liquid microextraction combined with gas chromatography-flame photometric detection: very simple, rapid and sensitive method for the determination of organophosphorus pesticides in water. J Chromatogr A 1123:1–9. doi: 10.1016/j.chroma.2006.05.010 Google Scholar
  107. 107.
    Farajzadeh MA, Bahram M, Jönsson J (2007) Dispersive liquid-liquid microextraction followed by high-performance liquid chromatography-diode array detection e array detection as an efficient and sensitive technique for determination of antioxidants. Anal Chim Acta 591:69–79. doi: 10.1016/j.aca.2007.03.040 Google Scholar
  108. 108.
    Farajzadeh MA, Djozan DJ, Fazeli Bakhtiyari R (2010) Use of a capillary tube for collecting an extraction solvent lighter than water after dispersive liquid–liquid microextraction and its application in the determination of parabens in different samples by gas chromatography-Flame ionization detection. Talanta 81:1360–1367. doi: 10.1016/j.talanta.2010.02.035 Google Scholar
  109. 109.
    Farjzadeh MA, Seyedi SE, Shalmazari MS, Bamorowat M (2009) Dispersive liquid-liquid microextraction using extraction solvent lighter than water. J Sep Sci 32:3191–3200. doi: 10.1002/jssc.200900109 Google Scholar
  110. 110.
    Liu X, Hu J, Huang C, Wang H, Wang X (2009) Determination of polybrominated diphenyl ethers in aquatic animal tissue using cleanup by freezing-dispersive liquid-liquid microextraction combined with GC-MS. J Sep Sci 32:4213–4219. doi: 10.1002/jssc.200900480 Google Scholar
  111. 111.
    Zhonghua Y, Yu L, Donghui L, Zhiqiang Z (2012) Determination of organophosphorus pesticides in soil by dispersive liquid-liquid microextraction and gas chromatography. J Chromatogr Sci 50:15–20. doi: 10.1093/chromsci/bmr011 Google Scholar
  112. 112.
    Soleyman M, Milani Hosseini MR (2009) Development of dispersive liquid-liquid microextraction method for the analysis of organophosphorus pesticides in tea. J Hazard Mater 169:907–911. doi: 10.1016/j.jhazmat.2009.04.030 Google Scholar
  113. 113.
    Farajzadeh MA, Vardast MR, Jonsson JA (2007) Liquid–gas-liquid microextraction as a simple technique for the extraction of 2,4-di-tert-butyl phenol from aqueous samples. Chromatographia 66:415–419. doi: 10.1365/s10337-007-0313-8 Google Scholar
  114. 114.
    Zhang S, Li C, Song S, Feng T, Wang C, Wang Z (2010) Application of dispersive liquid–liquid microextraction combined with sweeping micellar electrokinetic chromatography for trace analysis of six carbamate pesticides in apples. Anal Methods 2:54–62. doi: 10.1039/B9AY00115H Google Scholar
  115. 115.
    Cunha SC, Fernandes JO, Oliveira MBPP (2009) Fast analysis of multiple pesticide residues in apple juice using dispersive liquid-liquid microextraction and multidimensional gas chromatography–mass spectrometry. J Chromatogr A 1216:8835–8844. doi: 10.1016/j.chroma.2009.10.051 Google Scholar
  116. 116.
    Tsai WC, Huang SD (2009) Dispersive liquid–liquid microextraction with little solvent consumption combined with gas chromatography–mass spectrometry for the pretreatment of organochlorine pesticides in aqueous samples. J Chromatogr A 1216:5171–5175. doi: 10.1016/j.chroma.2009.04.086 Google Scholar
  117. 117.
    Chou TY, Lin SL, Fuh MR (2009) Determination of phenylurea herbicides in aqueous samples using partitioned dispersive liquid–liquid microextraction. Talanta 80:493–498. doi: 10.1016/j.talanta.2009.07.005 Google Scholar
  118. 118.
    Saraji M, Tansazan N (2009) Application of dispersive liquid-liquid microextraction for the determination of phenylurea herbicides in water samples by HPLC-diode array detection e array detection. J Sep Sci 32:4186–4192. doi: 10.1002/jssc.200900438 Google Scholar
  119. 119.
    Caldas SS, Costa FP, Primel EG (2010) Validation of method for determination of different classes of pesticides in aqueous samples by dispersive liquid–liquid microextraction with liquid chromatography-tandem mass spectrometric detection. Anal Chim Acta 665:55–62. doi: 10.1016/j.aca.2010.03.004 Google Scholar
  120. 120.
    Naeenia MH, Yaminia Y, Rezaee M (2011) Combination of supercritical fluid extraction with dispersive liquid–liquid microextraction for extraction of organophosphorus pesticides from soil and marine sediment samples. J Supercrit Fluid 57:219–226. doi: 10.1016/j.supflu.2011.03.005 Google Scholar
  121. 121.
    Boonchiangma S, Ngeontae W, Srijaranai S (2012) Determination of six pyrethroid insecticides in fruit juice samples using dispersive liquid–liquid microextraction combined with high performance liquid chromatography. Talanta 88:209–215. doi: 10.1016/j.talanta.2011.10.033 Google Scholar
  122. 122.
    Chen L, Yin L, Song F, Liu Z, Zheng Z, Xing J, Liu S (2013) Determination of pesticide residues in ginseng by dispersive liquid-liquid microextraction and ultra high performance liquid chromatography tandem mass spectrometry. J Chromatogr B 917–918:71–77. doi: 10.1016/j.jchromb.2012.12.034 Google Scholar
  123. 123.
    Xie HX, He LJ, Wu Y, Lu K, Si X-Z (2007) Determination of organophosphorus pesticides in water samples using ionic liquid-based liquid phase microextraction coupled with high-performance liquid chromatography. Fenxi Huaxue 35:187–190Google Scholar
  124. 124.
    Zhou Q, Bai H, Xie G, Xiao J (2008) Temperature-controlled ionic liquid dispersive liquid phase micro-extraction. J Chromatogr A 1177:43–49. doi: 10.1016/j.microc.2011.09.009 Google Scholar
  125. 125.
    Wang S, Ren L, Liu C, Ge J, Liu F (2010) Determination of five polar herbicides in water samples by ionic liquid dispersive liquid-phase microextraction. Anal Bioanal Chem 397:3089–3095. doi: 10.1007/s00216-010-3841-2 Google Scholar
  126. 126.
    Zhou Q, Pang L, Xiao J (2011) Ultratrace determination of carbamate pesticides in water samples by temperature controlled ionic liquid dispersive liquid phase microextraction combined with high performance liquid phase chromatography. Microchim Acta 173:477–483. doi: 10.1007/s00604-011-0587-2 Google Scholar
  127. 127.
    Wang S, Liu C, Yang S, Liu F (2013) Ionic liquid-based dispersive liquid-liquid microextraction following high-performance liquid chromatography for the determination of fungicides in fruit juices. Food Anal Methods 6:481–487. doi: 10.1007/s12161-012-9402-x Google Scholar
  128. 128.
    Zhou Q, Bai H, Xie G, Xiao J (2008) Trace determination of organophosphorus pesticides in environmental samples by temperature-controlled ionic liquid dispersive liquid-phase microextraction. J Chromatogr A 1188:148–153. doi: 10.1016/j.chroma.2008.02.094 Google Scholar
  129. 129.
    He L, Luo X, Xie H, Wang C, Jiang X, Lu K (2009) Ionic liquid-based dispersive liquid-liquid microextraction followed high-performance liquid chromatography for the determination of organophosphorus pesticides in water sample. Anal Chim Acta 655:52–59. doi: 10.1016/j.aca.2009.09.044 Google Scholar
  130. 130.
    Liu Y, Zhao E, Zhu W, Gao H, Zhou Z (2009) Determination of four heterocyclic insecticides by ionic liquid dispersive liquid-liquid microextraction in water samples. J Chromatogr A 1216:885–891. doi: 10.1016/j.chroma.2008.11.076 Google Scholar
  131. 131.
    Ramos MA, Herná J (2011) Ionic liquid-dispersive liquid-liquid microextraction for the simultaneous determination of pesticides and metabolites in soils using high-performance liquid chromatography and fluorescence detection. J Chromatogr A 1218:4808–4816. doi: 10.1016/j.chroma.2010.11.030 Google Scholar
  132. 132.
    Zhang J, Gao H, Peng B, Li S, Zhou Z (2011) Comparison of the performance of conventional, temperature-controlled, and ultrasound-assisted ionic liquid dispersive liquid–liquid microextraction combined with high-performance liquid chromatography in analyzing pyrethroid pesticides in honey samples. J Chromatogr A 1218:6621–6629. doi: 10.1016/j.chroma.2011.07.102 Google Scholar
  133. 133.
    Regueiro J, Liompart M, Garcia-Jares C, Garcia-Monteagudo JC, Cela R (2008) Ultrasound-assisted emulsification-microextraction of emergent contaminants and pesticides in environmental waters. J Chromatogr A 1190:27–38. doi: 10.1016/j.chroma.2008.02.091 Google Scholar
  134. 134.
    Wu J, Xiang B, Xia J (2009) Application of ultrasound-assisted emulsification-microextraction combined with high performance liquid chromatography to the determination of propoxur in environmental and beverage samples. Microchim Acta 166:157–162. doi: 10.1007/s00604-009-0179-6 Google Scholar
  135. 135.
    Wu Q, Chang Q, Wu C, Rao H, Zeng X, Wang C, Wang Z (2010) Ultrasound-assisted surfactant-enhanced emulsification microextraction for the determination of carbamate pesticides in water samples by high performance liquid chromatography. J Chromatogr A 1217:1773–1778. doi: 10.1016/j.chroma.2010.01.060 Google Scholar
  136. 136.
    Wang S, Ren L, Xu Y, Liu F (2011) Application of ultrasound-assisted ionic liquid dispersive liquid-phase microextraction followed high-performance liquid chromatography for the determination of fungicides in red wine. Microchim Acta 173:453–457. doi: 10.1007/s00604-011-0577-4 Google Scholar
  137. 137.
    Zhang Y, Lee HK (2012) Application of ultrasound-assisted emulsification microextraction based on applying low-density organic solvent for the determination of organochlorine pesticides in water samples. J Chromatogr A 1252:67–73. doi: 10.1016/j.chroma.2012.06.065 Google Scholar
  138. 138.
    Zhang J, Liang Z, Li S, Li Y, Peng B, Zhou W, Gao H (2012) In-situ metathesis reaction combined with ultrasound-assisted ionic liquid dispersive liquid–liquid microextraction method for the determination of phenylurea pesticides in water samples. Talanta 98:145–151. doi: 10.1016/j.talanta.2012.06.062 Google Scholar
  139. 139.
    Khalili Zanjani MR, Yamini Y, Shariati S, Jonsson JA (2007) A new liquid-phase microextraction method based on solidification of floating organic drop. Anal Chim Acta 585:286–293. doi: 10.1016/j.aca.2006.12.049 Google Scholar
  140. 140.
    Leong MI, Huang S-D (2009) Dispersive liquid-liquid microextraction method based on solidification of floating organic drop for extraction of organochlorine pesticides in water samples. J Chromatogr A 1216:7645–7650. doi: 10.1016/j.chroma.2009.09.004 Google Scholar
  141. 141.
    Ch W, Liu H, Liu W, Wu Q, Wang C, Wang Z (2010) Determination of organophosphorus pesticides in environmental water samples by dispersive liquid-liquid microextraction with solidification of floating organic droplet followed by high-performance liquid chromatography. Anal Bioanal Chem 397:2543–2549. doi: 10.1007/s00216-010-3790-9 Google Scholar
  142. 142.
    Chang Q, Feng T, Song S, Zhou X, Wang C, Wang Z (2010) Analysis of eight pyrethroids in water samples by liquid-liquid microextraction based on solidification of floating organic droplet combined with gas chromatography. Microchim Acta 171:241–247. doi: 10.1007/s00604-010-0430-1 Google Scholar
  143. 143.
    Cheng J, Xiao J, Zhou Y, Xia Y, Guo F, Li J (2011) Dispersive liquid-liquid microextraction based on solidification of floating organic droplet method for the determination of diethofencarb and pyrimethanil in aqueous samples. Microchim Acta 172:51–55. doi: 10.1007/s00604-010-0458-2 Google Scholar
  144. 144.
    Zhou YW, Han LT, Cheng J, Guo F, Zhi XR, Hu H, Chen G (2011) Dispersive liquid-liquid microextraction based on the solidification of a floating organic droplet for simultaneous analysis of diethofencarb and pyrimethanil in apple pulp and peel. Anal Bioanal Chem 399:1901–1906. doi: 10.1007/s00216-010-4567-x Google Scholar
  145. 145.
    Sanagi MM, Abbas HH, Ibrahim WAW, Aboul-Enien HY (2012) Dispersive liquid–liquid microextraction method based on solidification of floating organic droplet for the determination of triazine herbicides in water and sugarcane samples. Food Chem 133:557–562. doi: 10.1016/j.foodchem.2012.01.036 Google Scholar
  146. 146.
    Farajzadeh MA, Djozan DJ, Khorram P (2011) Development of a new microextraction method based on a dynamic single drop in a narrow-bore tube: application in extraction and preconcentration of some organic pollutants in well water and grape juice samples. Talanta 85:1135–1142. doi: 10.1016/j.talanta.2011.05.044 Google Scholar
  147. 147.
    Farajzadeh MA, Djozan DJ, Khorram P (2012) Development of a new dispersive liquid–liquid microextraction method in a narrow-bore tube for preconcentration of triazole pesticides from aqueous samples. Anal Chim Acta 713:70–78. doi: 10.1016/j.aca.2011.11.030 Google Scholar
  148. 148.
    Farajzadeh MA, Afshar Mogaddam MR (2012) Air-assisted liquid-liquid microextraction method as a novel microextraction technique; application in extraction and preconcentration of phthalate esters in aqueous sample followed by gas chromatography-flame ionization detection. Anal Chim Acta 728:31–38. doi: 10.1016/j.aca.2012.03.031 Google Scholar
  149. 149.
    Farajzadeh MA, Afshar Mogaddam MR, Abdollahi Aghdam A (2013) Comparison of air-agitated liquid–liquid microextraction technique and conventional dispersive liquid–liquid microextraction for determination of triazole pesticides in aqueous samples by gas chromatography with flame ionization detection. J Chromatogr A 1300:70–78. doi: 10.1016/j.chroma.2013.02.033 Google Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Mir Ali Farajzadeh
    • 1
    Email author
  • Saeed Mohammad Sorouraddin
    • 1
  • Mohammad Reza Afshar Mogaddam
    • 1
  1. 1.Department of Analytical Chemistry, Faculty of ChemistryUniversity of TabrizTabrizIran

Personalised recommendations