Microchimica Acta

, Volume 181, Issue 5–6, pp 479–491 | Cite as

Recent trends in SELEX technique and its application to food safety monitoring

  • Jingjing Wu
  • Yingyue Zhu
  • Feng Xue
  • Zhanlong Mei
  • Li Yao
  • Xin Wang
  • Lei Zheng
  • Jian Liu
  • Guodong Liu
  • Chifang Peng
  • Wei Chen
Review Article


The method referred to as “systemic evolution of ligands by exponential enrichment” (SELEX) was introduced in 1990 and ever since has become an important tool for the identification and screening of aptamers. Such nucleic acids can recognize and bind to their corresponding targets (analytes) with high selectivity and affinity, and aptamers therefore have become attractive alternatives to traditional antibodies not the least because they are much more stable. Meanwhile, they have found numerous applications in different fields including food quality and safety monitoring. This review first gives an introduction into the selection process and to the evolution of SELEX, then covers applications of aptamers in the surveillance of food safety (with subsections on absorptiometric, electrochemical, fluorescent and other methods), and then gives conclusions and perspectives. The SELEX method excels by its features of in vitro, high throughput and ease of operation. This review contains 86 references.


Aptamers, novel recognition probes screened with SELEX, have been adopted as substitution to antibody in various fields and also widely applied in food safety monitoring.


SELEX Aptamer Food safety Rapid detection Biosensor 



This work is financially supported by the Huangshan Young Scholar Fund of Hefei University of Technology (407-037025), the National Natural Science Foundation of China with grant 31328009 and the NSF of Jiangsu Province (BK20130379, 13KJB550001), the Science and Technology Research Project of General Administration of Quality Supervision, Inspection and Quarantine of P. R. China (201210127, 201310135), the 12th Five Years Key Programs (2012BAK08B01-2, 2012BAK17B10, SS2012AA101001), Suzhou Science and Technology Committee Program (SS201335) and the Fundamental Research Funds for the Central Universities (2013HGCH0008, 2012HGCX0003).

G Liu acknowledges financial support from the National Cancer Institute (Grant number: R21CA137703) and the National Institute of General Medicine (NIGMS) (5P30 GM103332). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH.


  1. 1.
    Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822CrossRefGoogle Scholar
  2. 2.
    Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510CrossRefGoogle Scholar
  3. 3.
    Ciesiolka J, Gorski J, Yarus M (1995) Selection of an RNA domain that binds Zn2+. RNA 1:538–550Google Scholar
  4. 4.
    Wilson C, Szostak JW (1998) Isolation of a fluorophore-specific DNA aptamer with weak redox activity. J Biol Chem 5:609–617CrossRefGoogle Scholar
  5. 5.
    Yang Q, Goldstein IJ, Mei HY, Engelke DRX, Affiliations A (1998) DNA ligands that bind tightly and selectively to cellobiose. Proc Natl Acad Sci U S A 95:5462–5467CrossRefGoogle Scholar
  6. 6.
    Famulok M, Huttenhofer A (1996) In vitro selection analysis of neomycin binding RNAs with a mutagenized pool of variants of the 16S rRNA decoding region. Biochemistry 35:4265–4270CrossRefGoogle Scholar
  7. 7.
    Kraus E, James W, Barclay AN (1998) Cutting edge: Novel RNA ligands able to bind CD4 antigen and inhibit CD4+ T lymphocyte function. J Immunol 160:5209–5212Google Scholar
  8. 8.
    Fang XH, Tan WH (2010) Aptamers generated from cell-SELEX for molecular medicine: A chemical biology approach. Acc Chem Res 43:48–57CrossRefGoogle Scholar
  9. 9.
    Mascini M, Palchetti I, Tombelli S (2010) Nucleic acid and peptide aptamers: Fundamentals and bioanalytical aspects. Angew Chem Int Ed 51:1316–1332CrossRefGoogle Scholar
  10. 10.
    Jiang ZL, Fan YY, Liang AH, Wen GQ, Liu QY, Li TS (2010) Resonance scattering spectral detection of trace Pb2+ using aptamer-modified AuPd nanoalloy as probe. Plasmonics 5:375–381CrossRefGoogle Scholar
  11. 11.
    Pelossof G, Tel-Vered R, Liu XQ, Willner I (2011) Amplified surface plasmon resonance based DNA biosensors, aptasensors, and Hg2+ sensors using hemin/G-quadruplexes and Au nanoparticles. Chem Eur J 17:8904–8912CrossRefGoogle Scholar
  12. 12.
    Bonel L, Vidal JC, Duato P, Castillo JR (2011) An electrochemical competitive biosensor for ochratoxin A based on a DNA biotinylated aptamer. Biosens Bioelectron 26:3254–3259CrossRefGoogle Scholar
  13. 13.
    Zhang JK, Zhang BB, Wu Y, Jia SR, Fan T, Zhang ZY, Zhang CZ (2010) Fast determination of the tetracyclines in milk samples by the aptamer biosensor. Analyst 135:2706–2710CrossRefGoogle Scholar
  14. 14.
    Liang M, Liu R, Su RX, Qi W, Wang LB, He ZM (2012) Aptamer-based sensing technology towards food safety analysis. Progr Chem 24:1378–1387Google Scholar
  15. 15.
    Michaud M, Jourdan M, Ravelet C, Villet A, Ravel A, Grosset C, Peyrin E (2004) Immobilized DNA aptamers as target-specific chiral stationary phase for resolution of nucleoside and amino acid derivative enantiomers. Anal Chem 76:1015–1020CrossRefGoogle Scholar
  16. 16.
    German I, Buchanan DD, Kennedy RT (1998) Aptamers as ligands in affinity probe capillary electrophoresis. Anal Chem 70:4540–4545CrossRefGoogle Scholar
  17. 17.
    Dick LW Jr, McGown LB (2004) Aptamer-enhanced laser desorption/ionization for affinity mass spectrometry. Anal Chem 76:3037–3041CrossRefGoogle Scholar
  18. 18.
    Tombelli S, Minunni M, Mascini M (2005) Analytical application of aptamers. Biosens Bioelectron 20:2424–2434CrossRefGoogle Scholar
  19. 19.
    Mehta J, Rouah-Martin E, Dorst BV, Maes B, Herrebout W, Scippo ML, Dardenne F, Blust R, Robbens J (2012) Selection and characterization of PCB-binding DNA aptamers. Anal Chem 84:1669–1676CrossRefGoogle Scholar
  20. 20.
    Stoltenburg R, Reinemann C, Strehlitz B (2007) SELEX-A (r) evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng 24:381–403CrossRefGoogle Scholar
  21. 21.
    Cox JC, Ellington AD (2001) Automated selection of anti-protein aptamers. Bioorg Med Chem Lett 9:2525–2531CrossRefGoogle Scholar
  22. 22.
    Charlton J, Kirschenheuter GP, Smith D (1997) Highly potent irreversible inhibitors of neutrophil elastase generated by selection from a randomized DNA-valine phosphonate library. Biochemistry 36:3018–3026CrossRefGoogle Scholar
  23. 23.
    Zimmermann GR, Wick CL, Shields TP, Jenison RD, Pardi A (2000) Molecular interactions and metal binding in the theophylline-binding core of an RNA aptamer. RNA 6:659–667CrossRefGoogle Scholar
  24. 24.
    Ellington AD, Szostak JW (1992) Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures. Nature 355:850–852CrossRefGoogle Scholar
  25. 25.
    Daniels DA, Chen H, Hicke BJ, Swiderek KM, Gold L, Affiliations A (2003) A Tenascin-C aptamer identified by tumor cell SELEX: Systematic evolution of ligands by exponential enrichment. Proc Natl Acad Sci U S A 100:15416–15421CrossRefGoogle Scholar
  26. 26.
    Mendonsa SD, Bowser MT (2004) In vitro evolution of functional DNA using capillary electrophoresis. J Am Chem Soc 126:20–21CrossRefGoogle Scholar
  27. 27.
    Golden MC, Collins BD, Willis MC (2000) Diagnostic potential of Photo SELEX-evolved ssDNA aptamers. J Biotechnol 81:167–178CrossRefGoogle Scholar
  28. 28.
    Niazi JH, Lee SJ, Kim YS, Gu MB (2007) ssDNA aptamers that selectively bind oxytetracycline. Bioorg Med Chem 16:1261–1265Google Scholar
  29. 29.
    Bruno JG, Kiel L (2002) Use of magnetic beads in selection and detection of biotoxin aptamers by electrochemiluminescence and enzymatic methods. Biotechniques 32:178–183Google Scholar
  30. 30.
    Tok JBH, Cho J, Rando J (2000) RNA aptamers that specifically bind to a 16S ribosomal RNA decoding region construct. Nucleic Acids Res 28:2902–2910CrossRefGoogle Scholar
  31. 31.
    Tuerk C, MacDougal S, Gold L (1992) RNA pseudoknots that inhibit human immunodeficiency virus type 1 reverse transcriptase. Proc Natl Acad Sci U S A 89:6988–6992CrossRefGoogle Scholar
  32. 32.
    Boiziau C, Dausse E, Yurchenko L, Toulme JJ (1999) DNA aptamers selected against the HIV-1 trans-Activation-responsive RNA element form RNA-DNA kissing complexes. J Biol Chem 274:12730–12737CrossRefGoogle Scholar
  33. 33.
    Bock LC, Griffin LC, Latham JA, Vermaas EH, Toole JJ (1992) Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 355:564–566CrossRefGoogle Scholar
  34. 34.
    Jo M, Ahn JY, Lee J, Lee S, Hong SW, Yoo JW, Kang J, Dua P, Lee DK, Hong S, King S (2011) Development of single-stranded DNA aptamers for specific bisphenol A detection. Oligonucleotides 21:85–91CrossRefGoogle Scholar
  35. 35.
    Kim YS, Jung HS, Matsuura T, Lee HY, Kawai T, Gu MB (2007) Electrochemical detection of 17β-estradiol using DNA aptamer immobilized gold electrode chip. Biosens Bioelectron 22:2525–2531CrossRefGoogle Scholar
  36. 36.
    Cruz-Aguado JA, Penner G (2008) Determination of ochratoxin A with a DNA aptamer. J Agric Food Chem 56:10456–10561CrossRefGoogle Scholar
  37. 37.
    Chang TW, Blank M, Janardhanan P, Singh BR, Mello C, Blind M, Cai S (2010) In Vitro selection of RNA aptamers that inhibit the activity of type abotulinum neurotoxin. Biochem Biophys Res Commun 396:854–860CrossRefGoogle Scholar
  38. 38.
    McKeague M, Bradley CR, Girolamo AD, Visconti A, Miller JD, DeRoser MC (2010) Screening and initial binding assessment of fumosin B-1 aptamers. Int J Mol Sci 11:4864–4881CrossRefGoogle Scholar
  39. 39.
    NeoVentures Biotechnology Inc. (2013) Aptamer catalogue. -database/.
  40. 40.
    Tang JJ, Xie JW, Shao NS, Yan Y (2006) The DNA aptamers that specifically recognize ricin toxin are selected by two in vitro selection methods. Electrophoresis 27:1303–1311CrossRefGoogle Scholar
  41. 41.
    Joshi R, Janagama H, Dwivedi HP, Senthil Kumar TMA, Jaykus LA, Schefers J, Sreevatsan S (2009) Characterization and application of DNA aptamers for the capture and detection of Salmonella enterica serovars. Mol Cell Probes 23:20–28CrossRefGoogle Scholar
  42. 42.
    Stratis-Cullum DN, McMasters S, Pellegrino PM (2009) Evaluation of relative aptamer binding to campylobacter jejuni bacteria using affinity probe capillary electrophoresis. Anal Lett 42:2389–2402CrossRefGoogle Scholar
  43. 43.
    Ohk SH, Koo OK, Sen T, Yamamoto CM, Bhunia AK (2010) Antibody-aptamer functionalized fibre-optic biosensor for specific detection of Listeria monocytogenes from food. J Appl Microbiol 109:808–817CrossRefGoogle Scholar
  44. 44.
    Cao X, Li S, Chen L, Ding HM, Xu H, Huang YP, Li J, Liu NL, Cao WH, Zhu YJ, Shen BF, Shao NF (2009) Combining use of a panel of ssDNA aptamers in the detection of Staphylococcus aureus. Nucleic Acids Res 37:4621–4628CrossRefGoogle Scholar
  45. 45.
    Camille LAH, Zhang HQ, Guan LL, Li XF, Chris LX (2008) Selection of aptamers against live bacterial cells. Anal Chem 80:7812–7819CrossRefGoogle Scholar
  46. 46.
    Kim J, Kim MY, Kim HS, Hah SS (2011) Binding of uranyl ion by a DNA aptamer attached to a solid support. Bioorg Med Chem Lett 21:4020–4022CrossRefGoogle Scholar
  47. 47.
    Liu CW, Hsieh CW, Huang CC, Lin ZH, Chang HT (2008) Detection of mercury(II) based on Hg2+–DNA complexes inducing the aggregation of gold nanoparticles. Chem Commun 19:2242–2244CrossRefGoogle Scholar
  48. 48.
    Liu CW, Huang CC, Chang HT (2009) Highly selective DNA-based sensor for lead (II) and mercury (II) Ions. Anal Chem 81:2383–2387CrossRefGoogle Scholar
  49. 49.
    Berens C, Thain A, Schroeder R (2001) A tetracycline binding RNA aptamer. Bioorg Med Chem 9:2549–2556CrossRefGoogle Scholar
  50. 50.
    Kwon M, Chun SM, Jeong S, Yu J (2001) In vitro selection of RNA against kanamycin B. Mol Cell 11:303–311Google Scholar
  51. 51.
    Stead SL, Ashwin H, Johnston BH, Dallas A, Kazakov SA, Tarbin JA, Sharman M, Kay J, Keely BJ (2010) A RNA-aptamer-based assay for the detection and analysis of malachite green and leucomalachite green residues in fish tissue. Anal Chem 82:2652–2660CrossRefGoogle Scholar
  52. 52.
    Joeng CB, Niazi JH, Lee SJ, Gu MB (2009) ssDNA aptamers that recognize diclofenac and 2-anilinophenylacetic acid. Bioorg Med Chem 17:5380–5387CrossRefGoogle Scholar
  53. 53.
    He J, Liu Y, Fan M, Liu X (2011) Isolation and identification of the DNA aptamer target to acetamiprid. J Agric Food Chem 59:1582–1586CrossRefGoogle Scholar
  54. 54.
    Lato SM, Ellington AD (1996) Screening chemical libraries for nucleic acid binding drugs by in vitro selection a test case with lividomycin. Mol Divers 21:103–110CrossRefGoogle Scholar
  55. 55.
    Situ C, Buijs J, Mooney MH, Buijs J (2010) Advances in surface plasmon resonance biosensor technology towards high-throughput, food-safety analysis. Trends Anal Chem 29:1305–1315CrossRefGoogle Scholar
  56. 56.
    Vallejo-Cordoba B, Gonzalez-Cordova AF (2010) Capillary electrophoresis for the analysis of contaminants in emerging food safety issues and food traceability. Electrophoresis 31:2154–2164CrossRefGoogle Scholar
  57. 57.
    Hernandez F, Portoles T, Pitarch E, López FJ (2011) Gas chromatography coupled to high-resolution time-of-flight mass spectrometry to analyze trace-level organic compounds in the environment, food safety and toxicology. Trends Anal Chem 30:388–400CrossRefGoogle Scholar
  58. 58.
    Karoonuthaisiri N, Charlermroj R, Uawisetwathana U (2009) Development of antibody array for simultaneous detection of foodborne pathogens. Biosens Bioelectron 24:1641–1648CrossRefGoogle Scholar
  59. 59.
    Chai F, Wang C, Wang T, Li L, Su Z (2010) Colorimetric detection of Pb2+ using glutathione functionalized gold nanoparticles. Appl Mater Interfaces 2:1466–1470CrossRefGoogle Scholar
  60. 60.
    Wu LP, Zhao HW, Qin ZH, Zhao XY, Pu WD (2009) Highly selective Hg (II) ion detection based on linear blue-shift of the maximum absorption wavelength of silver nanoparticles. Biosens Bioelectron 24:3153–3158CrossRefGoogle Scholar
  61. 61.
    Wan YX, Wei TH, Jian RZ, Hong QL, Nian BL (2012) A triple-channel optical signal probe for Hg2+ detection based on acridine orange and aptamer-wrapped gold nanoparticles. J Mater Chem 22:11479–11482CrossRefGoogle Scholar
  62. 62.
    Li T, Li B, Wang E, Dong S (2009) G-quadruplex-based DNAzyme for sensitive mercury detection with the naked eye. Chem Commun 24:3551–3553CrossRefGoogle Scholar
  63. 63.
    Yang C, Lates V, Prieto-Simon B, Marty JL, Yang XR (2012) Aptamer-DNAzyme hairpins for biosensing of Ochratoxin A. Biosens Bioelectron 32:208–212CrossRefGoogle Scholar
  64. 64.
    Yang C, Wang Y, Marty JL, Yang X (2011) Aptamer-based colorimetric biosensing of ochratoxin A using unmodified gold nanoparticles indicator. Biosens Bioelectron 26:2724–2727CrossRefGoogle Scholar
  65. 65.
    Wang L, Ma WW, Chen W, Liu L, Ma W, Zhu YY, Xu LG, Kuang Y, Xu CY (2011) An aptamer-based chromatographic strip assay for sensitive toxin semi-quantitative detection. Biosens Bioelectron 26:3059–3062CrossRefGoogle Scholar
  66. 66.
    Spahn CM, Prescott CD (1996) Throwing a spanner in the works: Antibiotics and the translation apparatus. Int J Mol Med 74:423–439CrossRefGoogle Scholar
  67. 67.
    Jingbin W, Ndong M, Kai H, Matsuno K, Kayama F (2010) Placental transfer of melamine and its effects on rat dams and fetuses. Food Chem Toxicol 48:1791–1795CrossRefGoogle Scholar
  68. 68.
    Song KM, Cho M, Jo H, Min K, Jeon SH, Kim T, Han MS, Ku JK, Ban C (2011) Gold nanoparticle based colorimetric detection of kanamycin using a DNA aptamer. Anal Biochem 415:175–181CrossRefGoogle Scholar
  69. 69.
    Liang A, Zhou L, Qin H, Zhang Y, Quyang HX, Jiang ZY (2011) A highly sensitive aptamer-nanogold catalytic resonance scattering spectral assay for melamine. J Fluoresc 21:1907–1912CrossRefGoogle Scholar
  70. 70.
    Babkina SS, Ulakhovich NA (2005) Complexing of heavy metals with DNA and new bioaffinity method of their determination based on amperometric DNA-based biosensor. Anal Chem 77:1815–1824CrossRefGoogle Scholar
  71. 71.
    Xiao Y, Rowe AA, Plaxco KW (2007) Electrochemical detection of parts-per-billion lead via an electrode-bound DNAzyme assembly. J Am Chem Soc 129:262–263CrossRefGoogle Scholar
  72. 72.
    Kim YJ, Kim YS, Niazi JH, Gu MB (2010) Electrochemical aptasensor for tetracycline detection. Bioprocess Biosyst Eng 33:31–37CrossRefGoogle Scholar
  73. 73.
    Shi L, Liang G, Li X, Liu X (2012) Impedimetric DNA sensor for detection of Hg2+ and Pb2+. Anal Methods 4:1036–1040CrossRefGoogle Scholar
  74. 74.
    Kuang H, Chen W, Xu DH, Xu LG, Zhu YY, Liu LQ, Chu HQ, Peng CF, Xu CL, Zhu SF (2010) Fabricated aptamer-based electrochemical “signal-off” sensor of ochratoxin A. Biosens Bioelectron 26:710–716CrossRefGoogle Scholar
  75. 75.
    Huang L, Wu JJ, Zheng L, Qian HS, Xue F, Wu YC, Pan DD, Adeloju SB, Chen W (2013) Rolling chain amplification (RCA) based signal enhanced electrochemical aptasensor for rapid and ultrasensitive detection of ochratoxin A. Analytical Chemistry online.Google Scholar
  76. 76.
    Nie DD, Wu HY, Zheng QS, Guo LQ, Ye PR, Hao YL, Li YN, Fu FF, Guo YG (2012) A sensitive and selective DNAzyme-based flow cytometric method for detecting Pb2+ ions. Chem Commun 48:1150–1152CrossRefGoogle Scholar
  77. 77.
    Li CL, Liu KT, Lin YW, Chang HT (2011) Fluorescence detection of lead (II) ions through their induced catalytic activity of DNAzymes. Anal Chem 83:225–230CrossRefGoogle Scholar
  78. 78.
    Won-Bo S, Hyoyoung M, Hyo-Arm J, Jack AO, Duck-Hwa C, Kim M-G (2014) Chemiluminescence competitive aptamer assay for the detection of aflatoxin B1 in corn samples. Food Control 36:30–35CrossRefGoogle Scholar
  79. 79.
    Sheng L, Ren J, Miao Y, Wang J, Wang E (2011) PVP-coated graphene oxide for selective determination of ochratoxin A via quenching fluorescence of free aptamer. Biosens Bioelectron 26:3494–3499CrossRefGoogle Scholar
  80. 80.
    Wang LW, Chen W, Liu L, Ma W, Zhao Y, Zhu Y, Xu L, Kuang H, Xu CL (2011) Fluorescent strip sensor for rapid determination of toxins. Chem Commun 47:1574–1576CrossRefGoogle Scholar
  81. 81.
    Xu WC, Lu Y (2010) Label-free fluorescent aptamer sensor based on regulation of malachite green fluorescence. Anal Chem 82:574–578CrossRefGoogle Scholar
  82. 82.
    Gilad P, Ran T-V, Willner I (2012) Amplified surface Plasmon resonance and electrochemical detection of Pb2+ ions using the Pb2+-dependent DNAzyme and hemin/G-quadruplex as a label. Anal Chem 84:3703–3709CrossRefGoogle Scholar
  83. 83.
    De-los-Santos-Álvarez N, Lobo-Castanón MJ, Miranda-Ordieres AJ, Tunón-Blanco P (2009) SPR sensing of small molecules with modified RNA aptamers: Detection of neomycin B. Biosens Bioelectron 24:2547–2553CrossRefGoogle Scholar
  84. 84.
    Xu S (2012) Electromechanical biosensors for pathogen detection. Microchim Acta 178:245–260CrossRefGoogle Scholar
  85. 85.
    Lee HJ, Kim BC, Kim KW, Kim YK, Kim J, Oh MK (2009) A sensitive method to detect Escherichia coli based on immunomagnetic separation and real-time PCR amplification of aptamers. Biosens Bioelectron 24:3550–3555CrossRefGoogle Scholar
  86. 86.
    Liu GQ, Yu XF, Xue F, Chen W, Ye YK, Yang XJ, Lian YQ, Yan Y, Zong K (2012) Screening and preliminary application of a DNA aptamer for rapid detection of Salmonella O8. Microchim Acta 178:237–244CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Jingjing Wu
    • 1
  • Yingyue Zhu
    • 2
  • Feng Xue
    • 1
  • Zhanlong Mei
    • 1
  • Li Yao
    • 1
  • Xin Wang
    • 1
  • Lei Zheng
    • 3
  • Jian Liu
    • 1
  • Guodong Liu
    • 4
  • Chifang Peng
    • 5
  • Wei Chen
    • 1
  1. 1.School of Biotechnology and Food Engineering, Anhui Provincial Key Lab of Functional Materials & DevicesHefei University of TechnologyHefeiPeople’s Republic of China
  2. 2.School of Biotechnology and Food EngineeringChangshu Institute of TechnologyChangshuPeople’s Republic of China
  3. 3.School of Medical EngineeringHefei University of TechnologyHefeiPeople’s Republic of China
  4. 4.Department of Chemistry and BiochemistryNorth Dakota State UniversityFargoUSA
  5. 5.School Food Science & TechnologyJiangnan UniversityWuxiPeople’s Republic of China

Personalised recommendations