Microchimica Acta

, Volume 181, Issue 5–6, pp 519–525 | Cite as

Glucose biosensor based on a platinum electrode modified with rhodium nanoparticles and with glucose oxidase immobilized on gold nanoparticles

  • Xishan Guo
  • Bo Liang
  • Jinming Jian
  • Yelei ZhangEmail author
  • Xuesong YeEmail author
Original Paper


We have developed an enzymatic glucose biosensor that is based on a flat platinum electrode which was covered with electrophoretically deposited rhodium (Rh) nanoparticles and then sintered to form a large surface area. The biosensor was obtained by depositing glucose oxidase (GOx), Nafion, and gold nanoparticles (AuNPs) on the Rh electrode. The electrical potential and the fractions of Nafion and GOx were optimized. The resulting biosensor has a very high sensitivity (68.1 μA mM−1 cm−2) and good linearity in the range from 0.05 to 15 mM (r = 0.989). The limit of detection is as low as 0.03 mM (at an SNR of 3). The glucose biosensor also is quite selective and is not interfered by electroactive substances including ascorbic acid, uric acid and acetaminophen. The lifespan is up to 90 days. It was applied to the determination of glucose in blood serum, and the results compare very well with those obtained with a clinical analyzer.


An enzymatic glucose biosensor was prepared based on rhodium nanoparticle modified Pt electrode and glucose oxidase immobilized in gold nanoparticles and Nafion composite film. The electrode showed a good response to glucose. The sensor was applied to the determination of glucose in blood serum.


Blood glucose Biosensor Rh nanoparticle Gold nanoparticle Nafion 



The research was supported by National Natural Science Foundation of China (Grant No. 30600143, 81171416), National Key Technology R&D Program of China (No. 2012BAI16B02), Zhejiang Provincial Natural Science Foundation of China (Grant No. Y13H180019).


  1. 1.
    Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes estimates for the year 2000 and projections for 2030. Diabetes Care 27(5):1047–1053CrossRefGoogle Scholar
  2. 2.
    Association AD (2013) Diagnosis and classification of diabetes mellitus. Diabetes Care 36(Supplement 1):S67–S74CrossRefGoogle Scholar
  3. 3.
    Nakayama D, Takeoka Y, Watanabe M, Kataoka K (2003) Simple and precise preparation of a porous gel for a colorimetric glucose sensor by a templating technique. Angew Chem 115(35):4329–4332CrossRefGoogle Scholar
  4. 4.
    Fusari C, Demonte AM, Figueroa CM, Aleanzi M, Iglesias AA (2006) A colorimetric method for the assay of ADP-glucose pyrophosphorylase. Anal Biochem 352(1):145–147CrossRefGoogle Scholar
  5. 5.
    Ballarin B, Cassani MC, Mazzoni R, Scavetta E, Tonelli D (2007) Enzyme electrodes based on sono-gel containing ferrocenyl compounds. Biosens Bioelectron 22(7):1317–1322CrossRefGoogle Scholar
  6. 6.
    Heller A, Feldman B (2008) Electrochemical glucose sensors and their applications in diabetes management. Chem Rev 108(7):2482CrossRefGoogle Scholar
  7. 7.
    Kong T, Chen Y, Ye Y, Zhang K, Wang Z, Wang X (2009) An amperometric glucose biosensor based on the immobilization of glucose oxidase on the ZnO nanotubes. Sens Actuators, B 138(1):344–350CrossRefGoogle Scholar
  8. 8.
    Pickup JC, Hussain F, Evans ND, Rolinski OJ, Birch DJ (2005) Fluorescence-based glucose sensors. Biosens Bioelectron 20(12):2555–2565CrossRefGoogle Scholar
  9. 9.
    Ballerstadt R, Evans C, Gowda A, McNichols R (2007) Fiber-coupled fluorescence affinity sensor for 3-day in vivo glucose sensing. Journal of Diabetes Science and Technology 1(3):384–393CrossRefGoogle Scholar
  10. 10.
    Wang J (2001) Glucose biosensors: 40 years of advances and challenges. Electroanalysis 13(12)Google Scholar
  11. 11.
    Zhu J, Zhu Z, Lai Z, Wang R, Guo X, Wu X, Zhang G, Zhang Z, Wang Y, Chen Z (2002) Planar amperometric glucose sensor based on glucose oxidase immobilized by chitosan film on prussian blue layer. Sensors 2(4):127–136CrossRefGoogle Scholar
  12. 12.
    Norouzi P, Faridbod F, Larijani B, Ganjali MR (2010) Glucose biosensor based on MWCNTs-Gold nanoparticles in a Nafion film on the glassy carbon electrode using flow injection FFT continuous cyclic voltammetry. Int J Electrochem Sci 5:1213–1224Google Scholar
  13. 13.
    Yu B, Moussy Y, Moussy F (2005) Coil-type implantable glucose biosensor with excess enzyme loading. Front Biosci 10:512–520CrossRefGoogle Scholar
  14. 14.
    Vaidya R, Wilkins E (1994) Effect of interference on amperometric glucose biosensors with cellulose acetate membranes. Electroanalysis 6(8):677–682CrossRefGoogle Scholar
  15. 15.
    Kirwan SM, Rocchitta G, McMahon CP, Craig JD, Killoran SJ, O’Brien KB, Serra PA, Lowry JP, O’Neill RD (2007) Modifications of poly (o-phenylenediamine) permselective layer on Pt-Ir for biosensor application in neurochemical monitoring. Sensors 7(4):420–437CrossRefGoogle Scholar
  16. 16.
    Lee WL, Lai SM (2008) Preparation and characterization of glucose biosensors using self-assembled monolayers of alkanethiols. Sensor Letters 6(6):1005–1009CrossRefGoogle Scholar
  17. 17.
    Ji X, Ren J, Ni R, Liu X (2010) A stable and controllable Prussian blue layer electrodeposited on self-assembled monolayers for constructing highly sensitive glucose biosensor. Analyst (Cambridge, U K) 135(8):2092–2098CrossRefGoogle Scholar
  18. 18.
    Soukup J, Polan V, Kotzian P, Kalcher K, Vytřas K (2011) Rhodium and its compounds in amperometric biosensors based on redox enzymes. Int J Electrochem Sci 6:231–239Google Scholar
  19. 19.
    Zhai D, Liu B, Shi Y, Pan L, Wang Y, Li W, Zhang R, Yu G (2013) Highly sensitive glucose sensor based on Pt Nanoparticle/Polyaniline hydrogel heterostructures. ACS nano 7(4):3540–3546CrossRefGoogle Scholar
  20. 20.
    Zhao K, Zhuang S, Chang Z, Songm H, Dai L, He P, Fang Y (2007) Amperometric glucose biosensor based on platinum nanoparticles combined aligned carbon nanotubes electrode. Electroanalysis 19(10):1069–1074CrossRefGoogle Scholar
  21. 21.
    Thiagarajan S, Yang RF, Chen SM (2009) Palladium nanoparticles modified electrode for the selective detection of catecholamine neurotransmitters in presence of ascorbic acid. Bioelectrochemistry 75(2):163–169CrossRefGoogle Scholar
  22. 22.
    Chen M, Diao G (2009) Electrochemical study of mono-6-thio-β-cyclodextrin/ferrocene capped on gold nanoparticles: Characterization and application to the design of glucose amperometric biosensor. Talanta 80(2):815–820CrossRefGoogle Scholar
  23. 23.
    Xiao Y, Patolsky F, Katz E, Hainfeld JF, Willner I (2003) “Plugging into enzymes”: nanowiring of redox enzymes by a gold nanoparticle. Science 299(5614):1877–1881CrossRefGoogle Scholar
  24. 24.
    Zhang W, Qiao X, Chen J, Wang H (2006) Preparation of silver nanoparticles in water-in-oil AOT reverse micelles. J Colloid Interf Sci 302(1):370–373CrossRefGoogle Scholar
  25. 25.
    Long NN, Van Vu L, Kiem CD, Cong Doanh S, Thi Nguyet C, Thi Hang P, Duy Thien N, Quynh LM (2009) Synthesis and optical properties of colloidal gold nanoparticles. J Physics Conf Ser :2026Google Scholar
  26. 26.
    Vidotti M, Gonçales VR, Quartero VS, Danc B, de Torresi SIC (2010) Platinum nanoparticle-modified electrodes, morphologic, and electrochemical studies concerning electroactive materials deposition. J Solid State Electrochem 14(4):675–679CrossRefGoogle Scholar
  27. 27.
    Sulak MT, Gökdoğan O, Gülce A, Gülce H (2006) Amperometric glucose biosensor based on gold-deposited polyvinylferrocene film on Pt electrode. Biosens Bioelectron 21(9):1719–1726CrossRefGoogle Scholar
  28. 28.
    Manso J, Mena ML, Yáñez-Sedeño P, Pingarrón J (2007) Electrochemical biosensors based on colloidal gold–carbon nanotubes composite electrodes. J Electroanal Chem 603(1):1–7CrossRefGoogle Scholar
  29. 29.
    Wu B-Y, Hou S-H, Yin F, Li J, Zhao Z-X, Huang J-D, Chen Q (2007) Amperometric glucose biosensor based on layer-by-layer assembly of multilayer films composed of chitosan, gold nanoparticles and glucose oxidase modified Pt electrode. Biosens Bioelectron 22(6):838–844CrossRefGoogle Scholar
  30. 30.
    Zhang S, Wang N, Yu H, Niu Y, Sun C (2005) Covalent attachment of glucose oxidase to an Au electrode modified with gold nanoparticles for use as glucose biosensor. Bioelectrochemistry 67(1):15–22CrossRefGoogle Scholar
  31. 31.
    Du Y, Luo X-L, Xu J-J, Chen H-Y (2007) A simple method to fabricate a chitosan-gold nanoparticles film and its application in glucose biosensor. Bioelectrochemistry 70(2):342–347CrossRefGoogle Scholar
  32. 32.
    Shan C, Yang H, Han D, Zhang Q, Ivaska A, Niu L (2010) Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing. Biosens Bioelectron 25(5):1070–1074CrossRefGoogle Scholar
  33. 33.
    Dong J, Zhou X, Zhao H, Xu J, Sun Y (2011) Reagentless amperometric glucose biosensor based on the immobilization of glucose oxidase on a ferrocene@ NaY zeolite composite. Microchim Acta 174(3–4):281–288CrossRefGoogle Scholar
  34. 34.
    Shi X, Gu W, Li B, Chen N, Zhao K, Xian Y (2013) Enzymatic biosensors based on the use of metal oxide nanoparticles. Microchimica Acta:1–22Google Scholar
  35. 35.
    Li J, Yuan R, Chai Y (2011) Simple construction of an enzymatic glucose biosensor based on a nanocomposite film prepared in one step from iron oxide, gold nanoparticles, and chitosan. Microchim Acta 173(3–4):369–374CrossRefGoogle Scholar
  36. 36.
    Wang W, Ying S, Zhang Z, Huang S (2011) Novel glucose biosensor based on a glassy carbon electrode modified with hollow gold nanoparticles and glucose oxidase. Microchim Acta 173(1–2):143–148CrossRefGoogle Scholar
  37. 37.
    Zhao ZW, Chen XJ, Tay BK, Chen JS, Han ZJ, Khor KA (2007) A novel amperometric biosensor based on ZnO:Co nanoclusters for biosensing glucose. Biosens Bioelectron 23(1):135–139CrossRefGoogle Scholar
  38. 38.
    Jang HD, Kim SK, Chang H, Roh K-M, Choi J-W, Huang J (2012) A glucose biosensor based on TiO2–Graphene composite. Biosens Bioelectron 38(1):184–188CrossRefGoogle Scholar
  39. 39.
    Li J, Kuang D, Feng Y, Zhang F, Liu M (2012) Glucose biosensor based on glucose oxidase immobilized on a nanofilm composed of mesoporous hydroxyapatite, titanium dioxide, and modified with multi-walled carbon nanotubes. Microchim Acta 176(1–2):73–80CrossRefGoogle Scholar
  40. 40.
    Wang G, He X, Wang L, Gu A, Huang Y, Fang B, Geng B, Zhang X (2013) Non-enzymatic electrochemical sensing of glucose. Microchim Acta 180(3–4):161–186CrossRefGoogle Scholar
  41. 41.
    Sun F, Li L, Liu P, Lian Y (2011) Nonenzymatic electrochemical glucose sensor based on novel copper film. Electroanalysis 23(2):395–401CrossRefGoogle Scholar
  42. 42.
    Mahshid SS, Mahshid S, Dolati A, Ghorbani M, Yang L, Luo S, Cai Q (2011) Template-based electrodeposition of Pt/Ni nanowires and its catalytic activity towards glucose oxidation. Electrochim Acta 58:551–555CrossRefGoogle Scholar
  43. 43.
    Wang J, Sun X, Cai X, Lei Y, Song L, Xie S (2007) Nonenzymatic glucose sensor using freestanding single-wall carbon nanotube films. Electrochem Solid-State Lett 10(5):J58–J60CrossRefGoogle Scholar
  44. 44.
    Luo J, Zhang H, Jiang S, Jiang J, Liu X (2012) Facile one-step electrochemical fabrication of a non-enzymatic glucose-selective glassy carbon electrode modified with copper nanoparticles and graphene. Microchim Acta 177(3–4):485–490CrossRefGoogle Scholar
  45. 45.
    Qiao N, Zheng J (2012) Nonenzymatic glucose sensor based on glassy carbon electrode modified with a nanocomposite composed of nickel hydroxide and graphene. Microchim Acta 177(1–2):103–109CrossRefGoogle Scholar
  46. 46.
    Pandey P, Singh SP, Arya SK, Gupta V, Datta M, Singh S, Malhotra BD (2007) Application of thiolated gold nanoparticles for the enhancement of glucose oxidase activity. Langmuir 23(6):3333–3337CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  1. 1.Department of Biosystems EngineeringZhejiang UniversityHangzhouChina
  2. 2.Biosensor National Special Laboratory, College of Biomedical Engineering and Instrument ScienceZhejiang UniversityHangzhouChina
  3. 3.Linyi UniversityLinyiChina

Personalised recommendations