Microchimica Acta

, Volume 181, Issue 3–4, pp 381–387 | Cite as

Glucose biosensor based on glucose oxidase immobilized on unhybridized titanium dioxide nanotube arrays

  • Wei Wang
  • Yibing XieEmail author
  • Yong Wang
  • Hongxiu Du
  • Chi Xia
  • Fang Tian
Original Paper


A glucose biosensor has been fabricated by immobilizing glucose oxidase (GOx) on unhybridized titanium dioxide nanotube arrays using an optimized cross-linking technique. The TiO2 nanotube arrays were synthesized directly on a titanium substrate by anodic oxidation. The structure and morphology of electrode material were characterized by X-ray diffraction and scanning electron microscopy. The electrochemical performances of the glucose biosensor were conducted by cyclic voltammetry and chronoamperometry measurements. It gives a linear response to glucose in the 0.05 to 0.65 mM concentration range, with a correlation coefficient of 0.9981, a sensitivity of 199.6 μA mM−1 cm−2, and a detection limit as low as 3.8 µM. This glucose biosensor exhibited high selectivity for glucose determination in the presence of ascorbic acid, sucrose and other common interfering substances. This glucose biosensor also performed good reproducibility and long-time storage stability. This optimized cross-linking technique could open a new avenue for other enzyme biosensors fabrication.


A schematic diagram for the fabrication of unhybridized TiO2 nanotube arrays glucose biosensor via optimized cross-linking technique.


Titanium dioxide Nanotube arrays Glucose oxidase Biosensor Cross-linking 



The work was supported by National Natural Science Foundation of China (No. 21373047 and 20871029), Research Fund for the Doctoral Program of Higher Education of China (No. 200802861071), Program for New Century Excellent Talents in University of the State Ministry of Education (No. NCET-08-0119), Science & Technology Program of Suzhou City (No. SYG201017, ZXG2012026, SYN201208) and the Open Research Fund of State Key Laboratory of Bioelectronics, Southeast University (No. 2011E17).

Supplementary material

604_2013_1121_MOESM1_ESM.doc (1.3 mb)
ESM 1 (DOC 1.25 MB)


  1. 1.
    Wang C, Yin L, Zhang L, Gao R (2010) Ti/TiO2 nanotube array/Ni composite electrodes for nonenzymatic amperometric glucose sensing. J Phys Chem C 114(10):4408–4413CrossRefGoogle Scholar
  2. 2.
    Han XA, Zhu YH, Yang XL, Li CZ (2010) Amperometric glucose biosensor based on platinum nanoparticle encapsulated with a clay. Microchim Acta 171(3–4):233–239CrossRefGoogle Scholar
  3. 3.
    Yang SL, Lu ZZ, Luo SL, Liu CB, Tang YH (2013) Direct electrodeposition of a biocomposite consisting of reduced graphene oxide, chitosan and glucose oxidase on a glassy carbon electrode for direct sensing of glucose. Microchim Acta 180(1–2):127–135CrossRefGoogle Scholar
  4. 4.
    Li JH, Kuang DZ, Feng YL, Zhang FX, Liu MQ (2012) Glucose biosensor based on glucose oxidase immobilized on a nanofilm composed of mesoporous hydroxyapatite, titanium dioxide, and modified with multi-walled carbon nanotubes. Microchim Acta 176(1–2):73–80CrossRefGoogle Scholar
  5. 5.
    Jang HD, Kim SK, Chang H, Roh KM, Choi JW, Huang J (2012) A glucose biosensor based on TiO2-Graphene composite. Biosens Bioelectron 38(1):184–188CrossRefGoogle Scholar
  6. 6.
    Pang X, He D, Luo S, Cai Q (2009) An amperometric glucose biosensor fabricated with Pt nanoparticle-decorated carbon nanotubes/TiO2 nanotube arrays composite. Sensor Actuat B: Chem 137(1):134–138CrossRefGoogle Scholar
  7. 7.
    Galhardo KS, Torresi RM, de Torresi SIC (2012) Improving the performance of a glucose biosensor using an ionic liquid for enzyme immobilization. On the chemical interaction between the biomolecule, the ionic liquid and the cross-linking agent. Electrochim Acta 73:123–128CrossRefGoogle Scholar
  8. 8.
    Rakhi RB, Sethupathi K, Ramaprabhu S (2009) A glucose biosensor based on deposition of glucose oxidase onto crystalline gold nanoparticle modified carbon nanotube electrode. J Phys Chem B 113(10):3190–3194CrossRefGoogle Scholar
  9. 9.
    Lu J, Do I, Drzal LT, Worden RM, Lee I (2008) Nanometal-decorated exfoliated graphite nanoplatelet based glucose biosensors with high sensitivity and fast response. ACS Nano 2(9):1825–1832CrossRefGoogle Scholar
  10. 10.
    Salimi A, Compton RG, Hallaj R (2004) Glucose biosensor prepared by glucose oxidase encapsulated sol–gel and carbon-nanotube-modified basal plane pyrolytic graphite electrode. Anal Biochem 333(1):49–56CrossRefGoogle Scholar
  11. 11.
    Yang Q, Qu YX, Bo Y, Wen Y, Huang SS (2010) Biosensor for atrazin based on aligned carbon nanotubes modified with glucose oxidase. Microchim Acta 168(3–4):197–203CrossRefGoogle Scholar
  12. 12.
    Li Y, Liu X, Yuan H, Xiao D (2009) Glucose biosensor based on the room-temperature phosphorescence of TiO2/SiO2 nanocomposite. Biosens Bioelectron 24(12):3706–3710CrossRefGoogle Scholar
  13. 13.
    Pradhan D, Niroui F, Leung KT (2010) High-performance, flexible enzymatic glucose biosensor based on ZnO nanowires supported on a gold-coated polyester substrate. ACS Appl Mater Interfaces 2(8):2409–2412CrossRefGoogle Scholar
  14. 14.
    Bao SJ, Li CM, Zang JF, Cui XQ, Qiao Y, Guo J (2008) New nanostructured TiO2 for direct electrochemistry and glucose sensor applications. Adv Funct Mater 18(4):591–599CrossRefGoogle Scholar
  15. 15.
    Peng L, Mendelsohn AD, LaTempa TJ, Yoriya S, Grimes CA, Desai TA (2009) Long-term small molecule and protein elution from TiO2 nanotubes. Nano Lett 9(5):1932–1936CrossRefGoogle Scholar
  16. 16.
    Xu C-X, Huang K-J, Chen X-M, Xiong X-Q (2012) Direct electrochemistry of glucose oxidase immobilized on TiO2–graphene/nickel oxide nanocomposite film and its application. J Solid State Electron 90(7):1–6CrossRefGoogle Scholar
  17. 17.
    Kang Q, Yang L, Cai Q (2008) An electro-catalytic biosensor fabricated with Pt–Au nanoparticle-decorated titania nanotube array. Bioelectrochemistry 74(1):62–65CrossRefGoogle Scholar
  18. 18.
    Han X, Zhu Y, Yang X, Li C (2010) Electrocatalytic activity of Pt doped TiO2 nanotubes catalysts for glucose determination. J Alloys Compd 500(2):247–251CrossRefGoogle Scholar
  19. 19.
    Giacomelli CE, Esplandiú MJ, Ortiz PI, Avena MJ, De Pauli CP (1999) Ellipsometric study of bovine serum albumin adsorbed onto Ti/TiO2 electrodes. J Colloid Interface Sci 218(2):404–411CrossRefGoogle Scholar
  20. 20.
    Poghossian A, Malzahn K, Abouzar MH, Mehndiratta P, Katz E, Schöning MJ (2011) Integration of biomolecular logic gates with field-effect transducers. Electrochim Acta 56(26):9661–9665CrossRefGoogle Scholar
  21. 21.
    Vinoth Kumar V, Prem Kumar MP, Thiruvenkadaravi KV, Baskaralingam P, Senthil Kumar P, Sivanesan S (2012) Preparation and characterization of porous cross linked laccase aggregates for the decolorization of triphenyl methane and reactive dyes. Bioresour Technol 119:28–34CrossRefGoogle Scholar
  22. 22.
    Compagnone D, Esti M, Messia MC, Peluso E, Palleschi G (1998) Development of a biosensor for monitoring of glycerol during alcoholic fermentation. Biosens Bioelectron 13(7–8):875–880CrossRefGoogle Scholar
  23. 23.
    Compagnone D, Guilbault GG (1997) Glucose oxidase/hexokinase electrode for the determination of ATP. Anal Chim Acta 340(1–3):109–113CrossRefGoogle Scholar
  24. 24.
    Lai G-S, Zhang H-L, Han D-Y (2009) Amperometric hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase by carbon-coated iron nanoparticles in combination with chitosan and cross-linking of glutaraldehyde. Microchim Acta 165(1–2):159–165CrossRefGoogle Scholar
  25. 25.
    Wei N, Xin X, Du J, Li J (2011) A novel hydrogen peroxide biosensor based on the immobilization of hemoglobin on three-dimensionally ordered macroporous (3DOM) gold-nanoparticle-doped titanium dioxide (GTD) film. Biosens Bioelectron 26(8):3602–3607CrossRefGoogle Scholar
  26. 26.
    Zhao J, Yan YL, Zhu L, Li XX, Li GX (2013) An amperometric biosensor for the detection of hydrogen peroxide released from human breast cancer cells. Biosens Bioelectron 41:815–819CrossRefGoogle Scholar
  27. 27.
    Garjonyte R, Malinauskas A (2000) Amperometric glucose biosensors based on Prussian Blue–and polyaniline–glucose oxidase modified electrodes. Biosens Bioelectron 15(9):445–451CrossRefGoogle Scholar
  28. 28.
    Benvenuto P, Kafi A, Chen A (2009) High performance glucose biosensor based on the immobilization of glucose oxidase onto modified titania nanotube arrays. J Electroanal Chem 627(1):76–81CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Wei Wang
    • 1
    • 2
  • Yibing Xie
    • 1
    • 2
    Email author
  • Yong Wang
    • 1
  • Hongxiu Du
    • 1
    • 2
  • Chi Xia
    • 1
    • 2
  • Fang Tian
    • 1
  1. 1.School of Chemistry and Chemical EngineeringSoutheast UniversityNanjingChina
  2. 2.Suzhou Research Institute of Southeast UniversitySuzhouChina

Personalised recommendations