Microchimica Acta

, Volume 181, Issue 1–2, pp 79–87 | Cite as

Lactate biosensor based on a bionanocomposite composed of titanium oxide nanoparticles, photocatalytically reduced graphene, and lactate oxidase

  • Elena CaseroEmail author
  • Concepción Alonso
  • María Dolores Petit-Domínguez
  • Luis Vázquez
  • Ana María Parra-Alfambra
  • Pablo Merino
  • Susana Álvarez-García
  • Alicia de Andrés
  • Edna Suárez
  • Félix Pariente
  • Encarnación LorenzoEmail author
Original Paper


We have developed a lactate biosensor based on a bionanocomposite (BNC) composed of titanium dioxide nanoparticles (TiO2-NPs), photocatalytically reduced graphene, and lactate oxidase. Graphene oxide was photochemically reduced (without using any chemical reagents) in the presence of TiO2-NPs to give graphene nanosheets that were characterized by atomic force microscopy, Raman and X-ray photoelectron spectroscopy. The results show the nanosheets to possess few oxygen functionalities only and to be decorated with TiO2-NPs. These nanosheets typically are at least 1 μm long and have a thickness of 4.2 nm. A BNC was obtained by mixing lactate oxidase with the nanosheets and immobilized on the surface of a glassy carbon electrode. The resulting biosensor was applied to the determination of lactate. Compared to a sensor without TiO2-NPs, the sensor exhibits higher sensitivity (6.0 μA mM−1), a better detection limit (0.6 μM), a wider linear response (2.0 μM to 0.40 mM), and better reproducibility (3.2 %).


Bionanocomposite Photocatalitically reduced graphene Titanium dioxide NPs Biosensors platforms Lactate oxidase 



This work has been supported by Comunidad Autónoma de Madrid (project No. S2009/PPQ-1642, AVANSENS), Ministerio de Ciencia e Innovación (project No. CTQ2011-28157) and Ministerio de Economía y Competitividad (project No. FIS2012-38866-C05-05). We want to give thanks to Noemí González Díaz and Mario Ramírez Fernández from XRD polycrystalline laboratory of SIdI (UAM). P.M. thanks INTA for a “Rafael Calvo Rodés” FPI scholarship.

Supplementary material

604_2013_1070_MOESM1_ESM.doc (879 kb)
ESM 1 (DOC 879 kb)


  1. 1.
    Lu W, Luo Y, Chang G, Sun X (2011) Synthesis of functional SiO2-coated graphene oxide nanosheets decorated with Ag nanoparticles for H2O2 and glucose detection. Biosens Bioelectron 26:4791–4797CrossRefGoogle Scholar
  2. 2.
    Guo S, Dong S (2011) Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem Soc Rev 40:2644–2672CrossRefGoogle Scholar
  3. 3.
    Pumera M, Ambrosi A, Bonanni A, Chng ELK, Poh HL (2010) Graphene for electrochemical sensing and biosensing. TrAC-Trend Anal Chem 29:954–965CrossRefGoogle Scholar
  4. 4.
    Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price K, Tour JM (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458:872–876CrossRefGoogle Scholar
  5. 5.
    Jiao L, Zhang L, Wang X, Diankov G, Dai H (2009) Narrow graphene nanoribbons from carbon nanotubes. Nature 458:877–880CrossRefGoogle Scholar
  6. 6.
    Elías AL, Botello-Méndez AR, Meneses-Rodríguez D, González VJ, Ramírez-González D, Ci L, Muñoz-Sandoval E, Ajayan PM, Terrones H, Terrones M (2010) Longitudinal cutting of pure and doped carbon nanotubes to form graphitic nanoribbons using metal clusters as nanoscalpels. Nano Lett 10:366–372CrossRefGoogle Scholar
  7. 7.
    Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRefGoogle Scholar
  8. 8.
    Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224CrossRefGoogle Scholar
  9. 9.
    Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia YY, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565CrossRefGoogle Scholar
  10. 10.
    Wang GX, Yang J, Park J, Gou XL, Wang B, Liu H, Yao J (2008) Facile synthesis and characterization of graphene nanosheets. J Phys Chem C 112:8192–8195CrossRefGoogle Scholar
  11. 11.
    Williams G, Seger B, Kamat PV (2008) TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2:1487–1491CrossRefGoogle Scholar
  12. 12.
    Guo H-L, Wang X-F, Qian Q-Y, Wang F-B, Xia X-H (2009) A green approach to the synthesis of graphene nanosheets. ACS Nano 3:2653–2659CrossRefGoogle Scholar
  13. 13.
    Hass J, de Heer WA, Conrad EH (2008) The growth and morphology of epitaxial multilayer graphene. J Phys-Condens Mat 20:323202CrossRefGoogle Scholar
  14. 14.
    Stoller MD, Park SJ, Zhu YW, An JH, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502CrossRefGoogle Scholar
  15. 15.
    Yoo E, Kim J, Hosono E, Zhou H, Kudo T, Honma I (2008) Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett 8:2277–2282CrossRefGoogle Scholar
  16. 16.
    Shang N, Papakonstantinou P, Wang P, Silva SRP (2010) Platinum integrated graphene for methanol fuel cells. J Phys Chem C 114:15837–15841CrossRefGoogle Scholar
  17. 17.
    Gan T, Hu S (2011) Electrochemical sensors based on graphene materials. Microchim Acta 175:1–19CrossRefGoogle Scholar
  18. 18.
    Kuila T, Bose S, Khanra P, Mishra AK, Kim NH, Lee JH (2011) Recent advances in graphene-based biosensors. Biosens Bioelectron 26:4637–4648CrossRefGoogle Scholar
  19. 19.
    Pumera M (2011) Graphene in biosensing. Mater Today 14:308–315CrossRefGoogle Scholar
  20. 20.
    Pingarrón JM, Yáñez-Sedeño P, González-Cortés A (2008) Gold nanoparticle-based electrochemical biosensors. Electrochim Acta 53:5848–5866CrossRefGoogle Scholar
  21. 21.
    Parra-Alfambra AM, Casero E, Petit-Domínguez MD, Barbadillo M, Pariente F, Vázquez L, Lorenzo E (2011) New nanostructured electrochemical biosensors based on three-dimensional (3-mercaptopropyl)-trimethoxysilane network. Analyst 136:340–347CrossRefGoogle Scholar
  22. 22.
    Huang J, Li J, Yang Y, Wang X, Wu B, Anzai J, Osa T, Chen Q (2008) Development of an amperometric l-lactate biosensor based on l-lactate oxidase immobilized through silica sol–gel film on multi-walled carbon nanotubes/platinum nanoparticle modified glassy carbon electrode. Mater Sci Eng C 28:1070–1075CrossRefGoogle Scholar
  23. 23.
    Wang YT, Yu L, Wang J, Lou L, Du WJ, Zhu ZQ, Peng H, Zhu JZ (2011) A novel l-lactate sensor based on enzyme electrode modified with ZnO nanoparticles and multiwall carbon nanotubes. J Electroanal Chem 661:8–12CrossRefGoogle Scholar
  24. 24.
    Jang HD, Kim SK, Chang H, Roh KM, Choi JW, Huang J (2012) A glucose biosensor based on TiO2–Graphene composite. Biosens Bioelectron 38:184–188CrossRefGoogle Scholar
  25. 25.
    Saini D, Chauhan R, Solanki PR, Basu T (2012) Gold-nanoparticle decorated graphene-nanostructured polyaniline nanocomposite-based bienzymatic platform cholesterol sensing. International Scholarly Research Network, ISRN Nanotechnology 2012:ID 102543(1–12)Google Scholar
  26. 26.
    Zou F, Yu Y, Cao N, Wu L, Zhi J (2011) A novel approach for synthesis of TiO2–graphene nanocomposites and their photoelectrical properties. Scripta Mater 64:621–624CrossRefGoogle Scholar
  27. 27.
    Casero E, Alonso C, Vázquez L, Petit-Domínguez MD, Parra-Alfambra AM, de la Fuente M, Merino P, Álvarez-García S, de Andrés A, Pariente F, Lorenzo E (2013) Comparative response of biosensing platforms based on synthesized graphene oxide and electrochemically reduced graphene. Electroanal 25:154–165CrossRefGoogle Scholar
  28. 28.
    PDF database by the Joint Committee for Powder Diffraction Standards (JCPDS)Google Scholar
  29. 29.
    Serpone N, Lawless D, Khairutdinov R, Pelizzetti E (1995) Subnanosecond relaxation dynamics in TiO2 colloidal sols (particle sizes Rp = 1.0 − 13.4 nm). Relevance to heterogeneous photocatalysis. J Phys Chem 99:16655–16661CrossRefGoogle Scholar
  30. 30.
    Kamat PV, Bedja I, Hotchandani S (1994) Photoinduced charge transfer between carbon and semiconductor clusters. One-electron reduction of C60 in colloidal TiO2 semiconductor suspensions. J Phys Chem 98:9137–9142CrossRefGoogle Scholar
  31. 31.
    Briggs D, Beamson G (1992) The Scienta ESCA300 Data base. Wiley, New York, p 266Google Scholar
  32. 32.
    Gamero M, Sosna M, Pariente F, Lorenzo E, Bartlett PN, Alonso C (2012) Influence of macroporous gold support and its functionalization on lactate oxidase-based biosensors response. Talanta 94:328–334CrossRefGoogle Scholar
  33. 33.
    Wang K, Xu JJ, Chen HY (2006) Biocomposite of cobalt phthalocyanine and lactate oxidase for lactate biosensing with MnO2 nanoparticles as an eliminator of ascorbic acid interference. Sens Actuators B 114:1052–1058CrossRefGoogle Scholar
  34. 34.
    Parra AM, Casero E, Vázquez L, Pariente F, Lorenzo E (2006) Design and characterization of a lactate biosensor based on immobilized lactate oxidase onto gold surfaces. Anal Chim Acta 555:308–315CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Elena Casero
    • 1
    Email author
  • Concepción Alonso
    • 2
  • María Dolores Petit-Domínguez
    • 1
  • Luis Vázquez
    • 3
  • Ana María Parra-Alfambra
    • 1
  • Pablo Merino
    • 4
  • Susana Álvarez-García
    • 3
  • Alicia de Andrés
    • 3
  • Edna Suárez
    • 1
  • Félix Pariente
    • 1
  • Encarnación Lorenzo
    • 1
    Email author
  1. 1.Departamento de Química Analítica y Análisis InstrumentalFacultad de CienciasMadridSpain
  2. 2.Departamento de Química Física AplicadaFacultad de CienciasMadridSpain
  3. 3.Instituto de Ciencia de Materiales de Madrid (CSIC)MadridSpain
  4. 4.Centro de Astrobiología, INTA-CSICMadridSpain

Personalised recommendations