Microchimica Acta

, Volume 181, Issue 1–2, pp 1–22 | Cite as

Enzymatic biosensors based on the use of metal oxide nanoparticles

  • Xinhao Shi
  • Wei Gu
  • Bingyu Li
  • Ningning Chen
  • Kai Zhao
  • Yuezhong XianEmail author
Review Article


Over the past decades, various techniques have been developed to obtain materials at a nanoscale level to design biosensors with high sensitivity, selectivity and efficiency. Metal oxide nanoparticles (MONPs) are of particular interests and have received much attention because of their unique physical, chemical and catalytic properties. This review summarizes the progress made in enzymatic biosensors based on the use of MONPs. Synthetic methods, strategies for immobilization, and the functions of MONPs in enzymatic biosensing systems are reviewed and discussed. The article is subdivided into sections on enzymatic biosensors based on (a) zinc oxide nanoparticles, (b) titanium oxide nanoparticles, (c) iron oxide nanoparticles, and (d) other metal oxide nanoparticles. While substantial advances have been made in MONPs-based enzymatic biosensors, their applications to real samples still lie ahead because issues such as reproducibility and sensor stability have to be solved. The article contains 256 references.


A comprehensive and critical review on enzymatic biosensor based on metal oxide nanoparticles (MONPs) was provided. The progress and future perspectives of MONPs based enzymatic biosensing system were discussed.


Metal oxide nanoparticles Enzyme Biosensor Zinc oxide Titanium oxide Iron oxide 



This work was supported by the National Natural Science Foundation of China (No. 21175046), New Century Excellent Talents in University (No. NCET-09-0357) and Open Foundation of Shanghai Key Laboratory of Green Chemistry and Chemical Process.


  1. 1.
    Debecker DP, Mutin PH (2012) Non-hydrolytic sol-gel routes to heterogeneous catalysts. Chem Soc Rev 41(9):3624–3650Google Scholar
  2. 2.
    Meyer J, Hamwi S, Kroeger M, Kowalsky W, Riedl T, Kahn A (2012) Transition metal oxides for organic electronics: energetics, device physics and applications. Adv Mater 24(40):5408–5427Google Scholar
  3. 3.
    Jiang J, Li Y, Liu J, Huang X, Yuan C, Lou XW (2012) Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv Mater 24(38):5166–5180Google Scholar
  4. 4.
    Shaidarova LG, Budnikov GK (2008) Chemically modified electrodes based on noble metals, polymer films, or their composites in organic voltammetry. J Anal Chem 63(10):922–942Google Scholar
  5. 5.
    Shaidarova LG, Gedmina AV, Chelnokova IA, Budnikov GK (2011) Selective determination of paracetamol and acetylsalicylic acid on electrode modified with a mixed-valent film of ruthenium oxide-ruthenium cyanide. Russ J Appl Chem 84(4):620–627Google Scholar
  6. 6.
    Haun JB, Yoon T-J, Lee H, Weissleder R (2010) Magnetic nanoparticle biosensors. Wiley Interdiscip Rev 2(3):291–304Google Scholar
  7. 7.
    Xu Y, Wang E (2012) Electrochemical biosensors based on magnetic micro/nano particles. Electrochim Acta 84:62–73Google Scholar
  8. 8.
    Arya SK, Saha S, Ramirez-Vick JE, Gupta V, Bhansali S, Singh SP (2012) Recent advances in ZnO nanostructures and thin films for biosensor applications: review. Anal Chim Acta 737:1–21Google Scholar
  9. 9.
    Yakimova R, Selegard L, Khranovskyy V, Pearce R, Spetz AL, Uvdal K (2012) ZnO materials and surface tailoring for biosensing. Front Biosci (Elite Ed) 4:254–278Google Scholar
  10. 10.
    Solanki PR, Kaushik A, Agrawal VV, Malhotra BD (2011) Nanostructured metal oxide-based biosensors. NPG Asia Mater 3(1):17–24Google Scholar
  11. 11.
    Beek WJE, Wienk MM, RaJ J (2004) Efficient hybrid solar cells from zinc oxide nanoparticles and a conjugated polymer. Adv Mater 16(12):1009–1013Google Scholar
  12. 12.
    Umar A, Rahman MM, Kim SH, Hahn YB (2008) Zinc oxide nanonail based chemical sensor for hydrazine detection. Chem Commun 44(2):166–168Google Scholar
  13. 13.
    Zeng H, Cai W, Liu P, Xu X, Zhou H, Klingshirn C, Kalt H (2008) ZnO-based hollow nanoparticles by selective etching: elimination and reconstruction of metal-semiconductor interface, improvement of blue emission and photocatalysis. ACS Nano 2(8):1661–1670Google Scholar
  14. 14.
    Dolcet P, Casarin M, Maccato C, Bovo L, Ischia G, Gialanella S, Mancin F, Tondello E, Gross S (2012) Miniemulsions as chemical nanoreactors for the room temperature synthesis of inorganic crystalline nanostructures: ZnO colloids. J Mater Chem 22(4):1620–1626Google Scholar
  15. 15.
    Monge M, Kahn ML, Maisonnat A, Chaudret B (2003) Room-temperature organometallic synthesis of soluble and crystalline ZnO nanoparticles of controlled size and shape. Angew Chem Int Ed 42(43):5321–5324Google Scholar
  16. 16.
    Zhao Z, Lei W, Zhang X, Wang B, Jiang H (2010) ZnO-based amperometric enzyme biosensors. Sensors 10(2):1216–1231Google Scholar
  17. 17.
    Dai ZH, Shao GJ, Hong JM, Bao JC, Shen J (2009) Immobilization and direct electrochemistry of glucose oxidase on a tetragonal pyramid-shaped porous ZnO nanostructure for a glucose biosensor. Biosens Bioelectron 24(5):1286–1291Google Scholar
  18. 18.
    Palanisamy S, Vilian ATE, Chen SM (2012) Direct electrochemistry of glucose oxidase at reduced graphene oxide/zinc oxide composite modified electrode for glucose sensor. Int J Electron Sc 7(3):2153–2163Google Scholar
  19. 19.
    Hu FX, Chen SH, Wang CY, Yuan R, Chai YQ, Xiang Y, Wang C (2011) ZnO nanoparticle and multiwalled carbon nanotubes for glucose oxidase direct electron transfer and electrocatalytic activity investigation. J Mol Catal B 72(3–4):298–304Google Scholar
  20. 20.
    Zhao ZW, Chen XJ, Tay BK, Chen JS, Han ZJ, Khor KA (2007) A novel amperometric biosensor based on ZnO : Co nanoclusters for biosensing glucose. Biosens Bioelectron 23(1):135–139Google Scholar
  21. 21.
    Yang C, Xu CX, Wang XM (2012) ZnO/Cu nanocomposite: a platform for direct electrochemistry of enzymes and biosensing applications. Langmuir 28(9):4580–4585Google Scholar
  22. 22.
    Wang YT, Yu L, Zhu ZQ, Zhang J, Zhu JZ, Fan CH (2009) Improved enzyme immobilization for enhanced bioelectrocatalytic activity of glucose sensor. Sensors Actuators B 136(2):332–337Google Scholar
  23. 23.
    Bin F, Cuihong Z, Guangfeng W, Meifang W, Yulan J (2011) A glucose oxidase immobilization platform for glucose biosensor using ZnO hollow nanospheres. Sensors Actuators B 155(1):304–310310Google Scholar
  24. 24.
    Umar A, Rahman MM, Vaseem M, Hahn YB (2009) Ultra-sensitive cholesterol biosensor based on low-temperature grown ZnO nanoparticles. Electrochem Commun 11(1):118–121Google Scholar
  25. 25.
    Wang CY, Tan XR, Chen SH, Yuan R, Hu FX, Yuan DH, Xiang Y (2012) Highly-sensitive cholesterol biosensor based on platinum-gold hybrid functionalized ZnO nanorods. Talanta 94:263–270Google Scholar
  26. 26.
    Batra N, Tomar M, Gupta V (2012) Realization of an efficient cholesterol biosensor using ZnO nanostructured thin film. Analyst 137(24):5854–5859Google Scholar
  27. 27.
    Singh SP, Arya SK, Pandey P, Malhotra BD, Saha S, Sreenivas K, Gupta V (2007) Cholesterol biosensor based on rf sputtered zinc oxide nanoporous thin film. Appl Phys Lett 91(6):063901Google Scholar
  28. 28.
    Negahdary M, Asadi A, Mehrtashfar S, Imandar M, Akbari-Dastjerdi H, Salahi F, Jamaleddini A, Ajdary M (2012) A biosensor for determination of H2O2 by use of HRP enzyme and modified CPE with ZnO NPs. Int J Electron Sc 7(6):5185–5194Google Scholar
  29. 29.
    Xiang C, Zou Y, Sun LX, Xu F (2009) Direct electrochemistry and enhanced electrocatalysis of horseradish peroxidase based on flowerlike ZnO-gold nanoparticle-Nafion nanocomposite. Sensors Actuators B 136(1):158–162Google Scholar
  30. 30.
    Zhang YW, Zhang Y, Wang H, Yan B, Shen GL, Yu RQ (2009) An enzyme immobilization platform for biosensor designs of direct electrochemistry using flower-like ZnO crystals and nano-sized gold particles. J Electroanal Chem 627(1–2):9–14Google Scholar
  31. 31.
    Li YF, Liu ZM, Liu YL, Yang YH, Shen GL, Yu RQ (2006) A mediator-free phenol biosensor based on immobilizing tyrosinase to ZnO nanoparticles. Anal Biochem 349(1):33–40Google Scholar
  32. 32.
    Liu ZM, Liu YL, Yang HF, Yang Y, Shen GL, Yu RQ (2005) A mediator-free tyrosinase biosensor based on ZnO sol-gel matrix. Electroanalysis 17(12):1065–1070Google Scholar
  33. 33.
    Ansari SG, Wahab R, Ansari ZA, Kim YS, Khang G, Al HA, Shin HS (2009) Effect of nanostructure on the urea sensing properties of sol-gel synthesized ZnO. Sensors Actuators B 137(2):566–573Google Scholar
  34. 34.
    Ali A, Ansari AA, Kaushik A, Solanki PR, Barik A, Pandey MK, Malhotra BD (2009) Nanostructured zinc oxide film for urea sensor. Mater Lett 63(28):2473–2475Google Scholar
  35. 35.
    Zhang FF, Wang XL, Ai SY, Sun ZD, Wan Q, Zhu ZQ, Xian YZ, Jin LT, Yamamoto K (2004) Immobilization of uricase on ZnO nanorods for a reagentless uric acid biosensor. Anal Chim Acta 519(2):155–160Google Scholar
  36. 36.
    Wang YT, Yu L, Zhu ZQ, Zhang J, Zhu JZ (2009) Novel uric acid sensor based on enzyme electrode modified by ZnO nanoparticles and multiwall carbon nanotubes. Anal Lett 42(5):775–789Google Scholar
  37. 37.
    Zhao YG, Yan XQ, Kang Z, Lin P, Fang XF, Lei Y, Ma SW, Zhang Y (2013) Highly sensitive uric acid biosensor based on individual zincoxide micro/nanowires. Microchim Acta 180:759–766Google Scholar
  38. 38.
    Devi R, Yadav S, Pundir CS (2012) Amperometric determination of xanthine in fish meat by zinc oxide nanoparticle/chitosan/multiwalled carbon nanotube/polyaniline composite film bound xanthine oxidase. Analyst 137(3):754–759Google Scholar
  39. 39.
    Devi R, Thakur M, Pundir CS (2011) Construction and application of an amperometric xanthine biosensor based on zinc oxide nanoparticles-polypyrrole composite film. Biosens Bioelectron 26(8):3420–3426Google Scholar
  40. 40.
    Yang MH, Yang YH, Yang Y, Shen GL, Yu RQ (2005) Microbiosensor for acetylcholine and choline based on electropolymerization/sol-gel derived composite membrane. Anal Chim Acta 530(2):205–211Google Scholar
  41. 41.
    Wang YT, Yu L, Wang J, Lou L, Du WJ, Zhu ZQ, Peng H, Zhu JZ (2011) A novel l-lactate sensor based on enzyme electrode modified with ZnO nanoparticles and multiwall carbon nanotubes. J Electroanal Chem 661(1):8–12Google Scholar
  42. 42.
    Guan H, Chi D, Yu J (2011) Photoelectrochemical acetylcholinesterase biosensor incorporating zinc oxide nanoparticles. Adv Mater Res 183–185:1701–1706Google Scholar
  43. 43.
    Yadav S, Devi R, Kumar A, Pundir CS (2011) Tr-enzyme functionalized ZnO-NPs/CHIT/c-MWCNT/PANI composite film for amperometric determination of creatinine. Biosens Bioelectron 28(1):64–70Google Scholar
  44. 44.
    Jia XD, Lu F, Liu Y, Zhu JJ (2011) Synthesis of flower-like zinc oxide nanocrystals and their electrochemical biosensing. Chin J Inorg Chem 27(6):1150–1154Google Scholar
  45. 45.
    Zhu X, Yuri I, Gan X, Suzuki I, Li G (2007) Electrochemical study of the effect of nano-zinc oxide on microperoxidase and its application to more sensitive hydrogen peroxide biosensor preparation. Biosens Bioelectron 22(8):1600–1604Google Scholar
  46. 46.
    Lei Y, Yan X, Zhao J, Liu X, Song Y, Luo N, Zhang Y (2011) Improved glucose electrochemical biosensor by appropriate immobilization of nano-ZnO. Collods Surf B 82(1):168–172Google Scholar
  47. 47.
    Ahmad M, Pan C, Gan L, Nawaz Z, Zhu J (2010) Highly sensitive amperometric cholesterol biosensor based on Pt-incorporated fullerene-like ZnO nanospheres. J Phys Chem C 114(1):243–250Google Scholar
  48. 48.
    Shukla SK, Deshpande SR, Shukla SK, Tiwari A (2012) Fabrication of a tunable glucose biosensor based on zinc oxide/chitosan-graft-poly(vinyl alcohol) core-shell nanocomposite. Talanta 99:283–287Google Scholar
  49. 49.
    Ren XL, Chen D, Meng XW, Tang FQ, Hou XQ, Han D, Zhang L (2009) Zinc oxide nanoparticles/glucose oxidase photoelectrochemical system for the fabrication of biosensor. J Colloid Interface Sci 334(2):183–187Google Scholar
  50. 50.
    Kim KE, Kim TG, Sung YM (2012) Enzyme-conjugated zno nanocrystals for collisional quenching-based glucose sensing. Crystengcomm 14(8):2859–2865Google Scholar
  51. 51.
    Cosnier S, Gondran C, Senillou A, Gratzel M, Vlachopoulos N (1997) Mesoporous TiO2 films: new catalytic electrode materials for fabricating amperometric biosensors based on oxidases. Electroanalysis 9(18):1387–1392Google Scholar
  52. 52.
    Yu JH, Liu SQ, Ju HX (2003) Glucose sensor for flow injection analysis of serum glucose based on immobilization of glucose oxidase in titania sol-gel membrane. Biosens Bioelectron 19(4):401–409Google Scholar
  53. 53.
    Maniruzzaman M, Jang SD, Kim J (2012) Titanium dioxide-cellulose hybrid nanocomposite and its glucose biosensor application. Mater Sci Eng B 177(11):844–848Google Scholar
  54. 54.
    Cao H, Zhu Y, Tang L, Yang X, Li C (2008) A glucose biosensor based on immobilization of glucose oxidase into 3D macroporous TiO2. Electroanalysis 20(20):2223–2228Google Scholar
  55. 55.
    Lee SY, Matsuno R, Ishihara K, Takai M (2013) Direct electron transfer with enzymes on nanofiliform titanium oxide films with electron-transport ability. Biosens Bioelectron 41:289–293Google Scholar
  56. 56.
    Wei N, Xin X, Du J, Li J (2011) A novel hydrogen peroxide biosensor based on the immobilization of hemoglobin on three-dimensionally ordered macroporous (3DOM) gold-nanoparticle-doped titanium dioxide (GTD) film. Biosens Bioelectron 26(8):3602–3607Google Scholar
  57. 57.
    Chavhan PM, Reddy V, Kim C (2012) Nanostructured titanium oxide platform for application to ascorbic acid detection. Int J Electron Sc 7(6):5420–5428Google Scholar
  58. 58.
    Majidi MR, Asadpour ZK, Gholizadeh S (2010) Nanobiocomposite modified carbon-ceramic electrode based on nano-TiO2-plant tissue and its application for electrocatalytic oxidation of dopamine. Electroanalysis 22(15):1772–1780Google Scholar
  59. 59.
    Tasviri M, Rafiee PHA, Ghourchian H, Gholami MR (2011) Amine functionalized TiO2 coated on carbon nanotube as a nanomaterial for direct electrochemistry of glucose oxidase and glucose biosensing. J Mol Catal B 68(2):206–210Google Scholar
  60. 60.
    Jang HD, Kim SK, Chang H, Roh KM, Choi JW, Huang JX (2012) A glucose biosensor based on TiO2-graphene composite. Biosens Bioelectron 38(1):184–188Google Scholar
  61. 61.
    Zhang MH, Yuan R, Chai YQ, Li WJ, Zhong H, Wang C (2011) Glucose biosensor based on titanium dioxide-multiwall carbon nanotubes-chitosan composite and functionalized gold nanoparticles. Bioprocess Biosyst Eng 34(9):1143–1150Google Scholar
  62. 62.
    Li QW, Luo GA, Feng J, Zhou Q, Zhang L, Zhu YF (2001) Amperometric detection of glucose with glucose oxidase absorbed on porous nanocrystalline TiO2 film. Electroanalysis 13(5):413–416Google Scholar
  63. 63.
    Sousa CP, Polo AS, Torresi RM, De Torresi SIC, Alves WA (2010) Chemical modification of a nanocrystalline TiO2 film for efficient electric connection of glucose oxidase. J Colloid Interface Sci 346(2):442–447Google Scholar
  64. 64.
    Li Y, Liu XY, Yuan HY, Xiao D (2009) Glucose biosensor based on the room-temperature phosphorescence of TiO2/SiO2 nanocomposite. Biosens Bioelectron 24(12):3706–3710Google Scholar
  65. 65.
    Chou JC, Yang HY, Chen CW (2010) Glucose biosensor of ruthenium-doped TiO2 sensing electrode by co-sputtering system. Microelectron Reliab 50(5):753–756Google Scholar
  66. 66.
    Zhang XJ, Wang GF, Huang Y, Yu LT, Fang B (2011) Copper(II) doped nanoporous TiO2 composite based glucose biosensor. Anal Methods 3(11):2611–2615Google Scholar
  67. 67.
    Ding SN, Gao BH, Shan D, Sun YM, Cosnier S (2013) TiO2 nanocrystals electrochemiluminescence quenching by biological enlarged nanogold particles and its application for biosensing. Biosens Bioelectron 39(1):342–345Google Scholar
  68. 68.
    Chen X, Dong SJ (2003) Sol-gel-derived titanium oxide/copolymer composite based glucose biosensor. Biosens Bioelectron 18(8):999–1004Google Scholar
  69. 69.
    Cosnier S, Senillou A, Gratzel M, Comte P, Vlachopoulos N, Renault NJ, Martelet C (1999) A glucose biosensor based on enzyme entrapment within polypyrrole films electrodeposited on mesoporous titanium dioxide. J Electroanal Chem 469(2):176–181Google Scholar
  70. 70.
    Doong RA, Shih HM (2010) Array-based titanium dioxide biosensors for ratiometric determination of glucose, glutamate and urea. Biosens Bioelectron 25(6):1439–1446Google Scholar
  71. 71.
    Zhang Y, He PL, Hu NF (2004) Horseradish peroxidase immobilized in TiO2 nanoparticle films on pyrolytic graphite electrodes: direct electrochemistry and bioelectrocatalysis. Electrochim Acta 49(12):1981–1988Google Scholar
  72. 72.
    Zhong HA, Yuan R, Chai YQ, Li WJ, Zhang Y, Wang CY (2011) Amperometric biosensor for hydrogen peroxide based on horseradish peroxidase onto gold nanowires and TiO2 nanoparticles. Bioprocess Biosyst Eng 34(8):923–930Google Scholar
  73. 73.
    Wang Y, Ma XL, Wen Y, Xing YY, Zhang ZR, Yang HF (2010) Direct electrochemistry and bioelectrocatalysis of horseradish peroxidase based on gold nano-seeds dotted TiO2 nanocomposite. Biosens Bioelectron 25(11):2442–2446Google Scholar
  74. 74.
    Li Q, Cheng K, Weng WJ, Du PY, Han GR (2012) Highly sensitive hydrogen peroxide biosensors based on TiO2 nanodots/ITO electrodes. J Mater Chem 22(18):9019–9026Google Scholar
  75. 75.
    Tan SW, Tan XC, Xu J, Zhao DD, Zhang JL, Liu L (2011) A novel hydrogen peroxide biosensor based on sol-gel poly (vinyl alcohol) (PVA)/(titanium dioxide)TiO2 hybrid material. Anal Methods 3(1):110–115Google Scholar
  76. 76.
    Xu X, Zhao JQ, Jiang DC, Kong JL, Liu BH, Deng JQ (2002) TiO2 sol-gel derived amperometric biosensor for H2O2 on the electropolymerized phenazine methosulfate modified electrode. Anal Bioanal Chem 374(7–8):1261–1266Google Scholar
  77. 77.
    Lu HY, Yang J, Rusling JF, Hu NF (2006) Vapor-surface sol-gel deposition of titania alternated with protein adsorption for assembly of electroactive, enzyme-active films. Electroanalysis 18(4):379–390Google Scholar
  78. 78.
    Li WJ, Yuan R, Chai YQ, Hong CL, Zhuo Y (2008) Reagentless electrochemical hydrogen peroxide biosensor based on toluidine blue-derived organic material and functionalized gold nanoparticles. J Electrochem Soc 155(5):F97–F103Google Scholar
  79. 79.
    Zhou H, Liu L, Yin K, Liu SL, Li GX (2006) Electrochemical investigation on the catalytic ability of tyrosinase with the effect of nano titanium dioxide. Electrochem Commun 8(7):1168–1172Google Scholar
  80. 80.
    Chen X, Cheng GJ, Dong SJ (2001) Amperometric tyrosinase biosensor based on a sol-gel-derived titanium oxide-copolymer composite matrix for detection of phenolic compounds. Analyst 126(10):1728–1732Google Scholar
  81. 81.
    Lee YJ, Lyn YK, Choi HN, Lee WY (2007) Amperometric tyrosinase biosensor based on carbon nanotube-titania-Nafion composite film. Electroanalysis 19(10):1048–1054Google Scholar
  82. 82.
    Zhang T, Tian BZ, Kong JL, Yang PY, Liu BH (2003) A sensitive mediator-free tyrosinase biosensor based on an inorganic-organic hybrid titania sol-gel matrix. Anal Chim Acta 489(2):199–206Google Scholar
  83. 83.
    Doong RA, Shih HM (2006) Glutamate optical biosensor based on the immobilization of glutamate dehydrogenase in titanium dioxide sol-gel matrix. Biosens Bioelectron 22(2):185–191Google Scholar
  84. 84.
    Yang HC, Yuan R, Chai YQ, Su HL, Zhuo Y, Jiang W, Song ZJ (2011) Electrochemical immunosensor for human chorionic gonadotropin based on horseradish peroxidase-functionalized prussian blue-carbon nanotubes/gold nanocomposites as labels for signal amplification. Electrochim Acta 56(5):1973–1980Google Scholar
  85. 85.
    Cheng JJ, Di JW, Hong JH, Yao KA, Sun YB, Zhuang JY, Xu Q, Zheng HE, Bi SP (2008) The promotion effect of titania nanoparticles on the direct electrochemistry of lactate dehydrogenase sol-gel modified gold electrode. Talanta 76(5):1065–1069Google Scholar
  86. 86.
    Kafi AKM, Chen AC (2009) A novel amperometric biosensor for the detection of nitrophenol. Talanta 79(1):97–102Google Scholar
  87. 87.
    Wang K, Li HN, Wu J, Ju C, Yan JJ, Liu Q, Qiu BJ (2011) TiO2-decorated graphene nanohybrids for fabricating an amperometric acetylcholinesterase biosensor. Analyst 136(16):3349–3354Google Scholar
  88. 88.
    Jia JB, Zhang SP, Wang P, Wang HJ (2012) Degradation of high concentration 2,4-dichlorophenol by simultaneous photocatalytic-enzymatic process using TiO2/UV and laccase. J Hazard Mater 205:150–155Google Scholar
  89. 89.
    Su HL, Yuan R, Chai YQ, Zhuo Y (2012) Enzyme-nanoparticle conjugates at oil-water interface for amplification of electrochemical immunosensing. Biosens Bioelectron 33(1):288–292Google Scholar
  90. 90.
    Zhuo Y, Chai YQ, Yuan R, Mao L, Yuan YL, Han J (2011) Glucose oxidase and ferrocene labels immobilized at Au/TiO2 nanocomposites with high load amount and activity for sensitive immunoelectrochemical measurement of progrp biomarker. Biosens Bioelectron 26(9):3838–3844Google Scholar
  91. 91.
    Emregul E, Kocabay O, Derkus B, Yumak T, Emregul KC, Sinag A, Polat K (2013) A novel carboxymethylcellulose-gelatin-titanium dioxide-superoxide dismutase biosensor; electrochemical properties of carboxymethylcellulose-gelatin-titanium dioxide-superoxide dismutase. Bioelectrochemistry 90:8–17Google Scholar
  92. 92.
    Wei YY, Li Y, Qu YH, Xiao F, Shi GY, Jin LT (2009) A novel biosensor based on photoelectro-synergistic catalysis for flow-injection analysis system/amperometric detection of organophosphorous pesticides. Anal Chim Acta 643(1–2):13–18Google Scholar
  93. 93.
    Xie Q, Zhao Y, Chen X, Liu H, Evans DG, Yang W (2011) Nanosheet-based titania microspheres with hollow core-shell structure encapsulating horseradish peroxidase for a mediator-free biosensor. Biomaterials 32(27):6588–6594Google Scholar
  94. 94.
    Li YJ, Ma MJ, Zhu JJ (2012) Dual-signal amplification strategy for ultrasensitive photoelectrochemical immunosensing of alpha-fetoprotein. Anal Chem 84(23):10492–10499Google Scholar
  95. 95.
    Xu P, Zeng GM, Huang DL, Feng CL, Hu S, Zhao MH, Lai C, Wei Z, Huang C, Xie GX, Liu ZF (2012) Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ 424:1–10Google Scholar
  96. 96.
    Horak D, Babic M, Mackova H, Benes MJ (2007) Preparation and properties of magnetic nano- and microsized particles for biological and environmental separations. J Sep Sci 30(11):1751–1772Google Scholar
  97. 97.
    Lee N, Hyeon T (2012) Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chem Soc Rev 41(7):2575–2589Google Scholar
  98. 98.
    Liu F, Laurent S, Fattahi H, Elst LV, Muller RN (2011) Superparamagnetic nanosystems based on iron oxide nanoparticles for biomedical imaging. Nanomedicine 6(3):519–528Google Scholar
  99. 99.
    Arruebo M, Fernandez-Pacheco R, Ibarra MR, Santamaria J (2007) Magnetic nanoparticles for drug delivery. Nano Today 2(3):22–32Google Scholar
  100. 100.
    Kim JE, Shin JY, Cho MH (2012) Magnetic nanoparticles: an update of application for drug delivery and possible toxic effects. Arch Toxicol 86(5):685–700Google Scholar
  101. 101.
    Veiseh O, Gunn JW, Zhang M (2010) Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 62(3):284–304Google Scholar
  102. 102.
    Tassa C, Shaw SY, Weissleder R (2011) Dextran-coated iron oxide nanoparticles: a versatile platform for targeted molecular imaging, molecular diagnostics, and therapy. Acc Chem Res 44(10):842–852Google Scholar
  103. 103.
    Kievit FM, Zhang M (2011) Surface engineering of iron oxide nanoparticies for targeted cancer therapy. Acc Chem Res 44(10):853–862Google Scholar
  104. 104.
    Netto CGCM, Toma HE, Andrade LH (2013) Superparamagnetic nanoparticles as versatile carriers and supporting materials for enzymes. J Mol Catal B 85–86:71–92Google Scholar
  105. 105.
    Sandhu A, Handa H, Abe M (2010) Synthesis and applications of magnetic nanoparticles for biorecognition and point of care medical diagnostics. Nanotechnology 21(44):442001Google Scholar
  106. 106.
    Wang SX, Li G (2008) Advances in giant magnetoresistance biosensors with magnetic nanoparticle tags: review and outlook. IEEE Trans Magn 44(7):1687–1702Google Scholar
  107. 107.
    Jana NR, Chen YF, Peng XG (2004) Size- and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach. Chem Mater 16(20):3931–3935Google Scholar
  108. 108.
    Li JJ, Yuan R, Chai YQ, Che X (2010) Fabrication of a novel glucose biosensor based on Pt nanoparticles-decorated iron oxide-multiwall carbon nanotubes magnetic composite. J Mol Catal B 66(1–2):8–14Google Scholar
  109. 109.
    Krishna R, Titus E, Chandra S, Bardhan NK, Krishna R, Bahadur D, Gracio J (2012) Fabrication of a glucose biosensor based on citric acid assisted cobalt ferrite magnetic nanoparticles. J Nanosci Nanotechnol 12(8):6631–6638Google Scholar
  110. 110.
    Ozdemir C, Akca O, Medine EI, Demirkol DO, Unak P, Timur S (2012) Biosensing applications of modified core-shell magnetic nanoparticles. Food Anal Methods 5(4):731–736Google Scholar
  111. 111.
    Baby TT, Ramaprabhu S (2010) SiO2 coated Fe3O4 magnetic nanoparticle dispersed multiwalled carbon nanotubes based amperometric glucose biosensor. Talanta 80(5):2016–2022Google Scholar
  112. 112.
    Li JP, Chen XZ (2008) A novel glucose sensor based on sensitive film composed of Fe3O4/Au/GOX magnetic particulates. Acta Chim Sin 66(1):84–90Google Scholar
  113. 113.
    Yu JJ, Tu JX, Zhao FQ, Zeng BZ (2010) Direct electrochemistry and biocatalysis of glucose oxidase immobilized on magnetic mesoporous carbon. J Solid State Electrochem 14(9):1595–1600Google Scholar
  114. 114.
    Zou C, Fu YC, Xie QJ, Yao SZ (2010) High-performance glucose amperometric biosensor based on magnetic polymeric bionanocomposites. Biosens Bioelectron 25(6):1277–1282Google Scholar
  115. 115.
    Jimenez J, Sheparovych R, Pita M, Garcia AN, Dominguez E, Minko S, Katz E (2008) Magneto-induced self-assembling of conductive nanowires for biosensor applications. J Phys Chem C 112(19):7337–7344Google Scholar
  116. 116.
    Wang AJ, Li YF, Li ZH, Feng JJ, Sun YL, Chen JR (2012) Amperometric glucose sensor based on enhanced catalytic reduction of oxygen using glucose oxidase adsorbed onto core-shell Fe3O4@silica@Au magnetic nanoparticles. Mater Sci Eng C Mater Biol Appl 32(6):1640–1647Google Scholar
  117. 117.
    Peng HP, Liang RP, Zhang L, Qiu JD (2013) Facile preparation of novel core-shell enzyme-au-polydopamine-Fe3O4 magnetic bionanoparticles for glucosesensor. Biosens Bioelectron 42:293–299Google Scholar
  118. 118.
    Chen X, Zhu J, Chen Z, Xu C, Wang Y, Yao C (2011) A novel bienzyme glucose biosensor based on three-layer Au-Fe3O4@SiO2 magnetic nanocomposite. Sensors Actuators B 159(1):220–228Google Scholar
  119. 119.
    Li JP, Wei XP, Yuan YH (2009) Synthesis of magnetic nanoparticles composed by prussian blue and glucose oxidase for preparing highly sensitive and selective glucose biosensor. Sensors Actuators B 139(2):400–406406Google Scholar
  120. 120.
    Jianding Q, Huaping P, Ruping L (2007) Ferrocene-modified Fe3O4@SiO2 magnetic nanoparticles as building blocks for construction of reagentless enzyme-based biosensors. Electrochem Commun 9(11):2734–27382738Google Scholar
  121. 121.
    Yang LQ, Ren XL, Tang FQ, Zhang L (2009) A practical glucose biosensor based on Fe3O4 nanoparticles and chitosan/Nafion composite film. Biosens Bioelectron 25(4):889–895Google Scholar
  122. 122.
    Kim MI, Ye Y, Won BY, Shin S, Lee J, Park HG (2011) A highly efficient electrochemical biosensing platform by employing conductive nanocomposite entrapping magnetic nanoparticles and oxidase in mesoporous carbon foam. Adv Funct Mater 21(15):2868–2875Google Scholar
  123. 123.
    Tan XC, Zhang JL, Tan SW, Zhao DD, Huang ZW, Mi Y, Huang ZY (2009) Amperometric hydrogen peroxide biosensor based on horseradish peroxidase immobilized on Fe3O4/chitosan modified glassy carbon electrode. Electroanalysis 21(13):1514–1520Google Scholar
  124. 124.
    Yalciner F, Cevik E, Senel M, Baykal A (2011) Development of an amperometric hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto nickel ferrite nanoparticle-chitosan composite. Nano-Micro Lett 3(2):91–98Google Scholar
  125. 125.
    Zhang HL, Lai GS, Han DY, Yu AM (2008) An amperometric hydrogen peroxide biosensor based on immobilization of horseradish peroxidase on an electrode modified with magnetic dextran microspheres. Anal Bioanal Chem 390(3):971–977Google Scholar
  126. 126.
    Qu S, Huang F, Chen G, Yu S, Kong J (2007) Magnetic assembled electrochemical platform using Fe2O3 filled carbon nanotubes and enzyme. Electrochem Commun 9(12):2812–2816Google Scholar
  127. 127.
    Peng HP, Liang RP, Qiu JD (2011) Facile synthesis of Fe3O4@Al2O3 core-shell nanoparticles and their application to the highly specific capture of heme proteins for direct electrochemistry. Biosens Bioelectron 26(6):3005–3011Google Scholar
  128. 128.
    Qiu JD, Peng HP, Liang RP, Xia XH (2010) Facile preparation of magnetic core-shell Fe3O4@Au nanoparticle/myoglobin biofilm for direct electrochemistry. Biosens Bioelectron 25(6):1447–1453Google Scholar
  129. 129.
    Lai GS, Zhang HL, Han DY (2008) A novel hydrogen peroxide biosensor based on hemoglobin immobilized on magnetic chitosan microspheres modified electrode. Sensors Actuators B Chem 129(2):497–503503Google Scholar
  130. 130.
    Cui RJ, Yin F, Zhou LJ, Pan HC (2011) Direct electrochemistry of hemoglobin based on Fe3O4@SiO2 nanoparticles modified electrode. Chin J Chem 29(11):2481–2486Google Scholar
  131. 131.
    Won YH, Aboagye D, Jang HS, Jitianu A, Stanciu LA (2010) Core/shell nanoparticles as hybrid platforms for the fabrication of a hydrogen peroxide biosensor. J Mater Chem 20(24):5030–5034Google Scholar
  132. 132.
    Yang HW, Hua MY, Chen SL, Tsai RY (2013) Reusable sensor based on high magnetization carboxyl-modified graphene oxide with intrinsic hydrogen peroxide catalytic activity for hydrogen peroxide and glucose detection. Biosens Bioelectron 41:172–179Google Scholar
  133. 133.
    Zhang ZX, Zhu H, Wang XL, Yang XR (2011) Sensitive electrochemical sensor for hydrogen peroxide using Fe3O4 magnetic nanoparticles as a mimic for peroxidase. Microchim Acta 174(1–2):183–189Google Scholar
  134. 134.
    Zhang LH, Zhai YM, Gao N, Wen D, Dong SJ (2008) Sensing H2O2 with layer-by-layer assembled Fe3O4-PDDA nanocomposite film. Electrochem Commun 10(10):1524–1526Google Scholar
  135. 135.
    Jin HJ, Gan N, Hou JG, Hu FT, Cao YT, Zheng L, Guo ZY (2012) Signal amplification of electrochemical elisa for the detection of alpha-fetoprotein using core-shell Fe3O4@Au nanoparticles as labels. Sens Lett 10(3–4):886–893Google Scholar
  136. 136.
    Tang DP, Yuan R, Chai YQ (2006) Direct electrochemical immunoassay based on immobilization of protein-magnetic nanoparticle composites on to magnetic electrode surfaces by sterically enhanced magnetic field force. Biotechnol Lett 28(8):559–565Google Scholar
  137. 137.
    Zhuo Y, Yuan PX, Yuan R, Chai YQ, Hong CL (2009) Bienzyme functionalized three-layer composite magnetic nanoparticles for electrochemical immunosensors. Biomaterials 30(12):2284–2290Google Scholar
  138. 138.
    Zhang Y, Zeng GM, Tang L, Yu HY, Li JB (2007) Catechol biosensor based on immobilizing laccase to modified core-shell magnetic nanoparticles supported on carbon paste electrode. Huanjing Kexue 28(10)Google Scholar
  139. 139.
    Tang L, Zeng G, Liu J, Xu X, Zhang Y, Shen G, Li Y, Liu C (2008) Catechol determination in compost bioremediation using a laccase sensor and artificial neural networks. Anal Bioanal Chem 391(2):679–685Google Scholar
  140. 140.
    Wang S, Tan Y, Zhao D, Liu G (2008) Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles-chitosan nanocomposite. Biosens Bioelectron 23(12):1781–1787Google Scholar
  141. 141.
    Peacuterez-Loacutepez B, Merkoccedili A (2011) Magnetic nanoparticles modified with carbon nanotubes for electrocatalytic magnetoswitchable biosensing applications. Adv Funct Mater 21(2):58–6363Google Scholar
  142. 142.
    Liu ZM, Liu YL, Yang HF, Yang Y, Shen GL, Yu RQ (2005) A phenol biosensor based on immobilizing tyrosinase to modified core-shell magnetic nanoparticles supported at a carbon paste electrode. Anal Chim Acta 533(1):3–9Google Scholar
  143. 143.
    Wu S, Wang H, Tao S, Wang C, Zhang L, Liu Z, Meng C (2011) Magnetic loading of tyrosinase- Fe3O4/mesoporous silica core/shell microspheres for high sensitive electrochemical biosensing. Anal Chim Acta 686(1–2):81–86Google Scholar
  144. 144.
    Cevik E, Senel M, Baykal A, Abasiyanik MF (2012) A novel amperometric phenol biosensor based on immobilized HRP on poly(glycidylmethacrylate)-grafted iron oxide nanoparticles for the determination of phenol derivatives. Sensors Actuators B 173:396–405Google Scholar
  145. 145.
    Eguilaz M, Villalonga R, Yanez-Sedeno P, Pingarron JM (2011) Designing electrochemical interfaces with functionalized magnetic nanoparticles and wrapped carbon nanotubes as platforms for the construction of high-performance bienzyme biosensors. Anal Chem 83(20):7807–7814Google Scholar
  146. 146.
    Yu DH, Blankert B, Bodoki E, Bollo S, Vire JC, Sandulescu R, Nomura A, Kauffmann JM (2006) Amperometric biosensor based on horseradish peroxidase-immobilised magnetic microparticles. Sensors Actuators B 113(2):749–754Google Scholar
  147. 147.
    Kacar C, Erden PS, Pekyardimci S, Kilic E (2012) An Fe3O4-nanoparticles-based amperometric biosensor for creatine determination. Artif Cell Nanomed Biotechnol 41(1):2–7Google Scholar
  148. 148.
    Dong XY, Mi XN, Wang B, Xu JJ, Chen HY (2011) Signal amplification for DNA detection based on the HRP-functionalized Fe3O4 nanoparticles. Talanta 84(2):531–537Google Scholar
  149. 149.
    Sima VH, Patris S, Aydogmus Z, Sarakbi A, Sandulescu R, Kauffmann JM (2011) Tyrosinase immobilized magnetic nanobeads for the amperometric assay of enzyme inhibitors: application to the skin whitening agents. Talanta 83(3):980–987Google Scholar
  150. 150.
    Li K, Lai YJ, Zhang W, Jin LT (2011) Fe2O3@Au core/shell nanoparticle-based electrochemical DNA biosensor for escherichia coli detection. Talanta 84(3):607–613Google Scholar
  151. 151.
    Martinez NA, Schneider RJ, Messina GA, Raba J (2010) Modified paramagnetic beads in a microfluidic system for the determination of ethinylestradiol (EE2) in river water samples. Biosens Bioelectron 25(6):1376–1381Google Scholar
  152. 152.
    Chawla S, Pundir CS (2011) An electrochemical biosensor for fructosyl valine for glycosylated hemoglobin detection based on core-shell magnetic bionanoparticles modified gold electrode. Biosens Bioelectron 26(8):3438–3443Google Scholar
  153. 153.
    Zhang Y, Zeng GM, Tang L, Huang DL, Jiang XY, Chen YN (2007) A hydroquinone biosensor using modified core-shell magnetic nanoparticles supported on carbon paste electrode. Biosens Bioelectron 22(9–10):2121–2126Google Scholar
  154. 154.
    Zhao YT, Zhang WY, Lin YH, Du D (2013) The vital function of Fe3O4@Au nanocomposites for hydrolase biosensor design and its application in detection of methyl parathion. Nanoscale 5(3):1121–1126Google Scholar
  155. 155.
    Torres-Chavolla E, Alocilja EC (2011) Nanoparticle based DNA biosensor for tuberculosis detection using thermophilic helicase-dependent isothermal amplification. Biosens Bioelectron 26(11):4614–4618Google Scholar
  156. 156.
    Teymourian H, Salimi A, Hallaj R (2012) Low potential detection of NADH based on Fe3O4 nanoparticles/multiwalled carbon nanotubes composite: fabrication of integrated dehydrogenase-based lactate biosensor. Biosens Bioelectron 33(1):60–68Google Scholar
  157. 157.
    Bonel L, Vidal JC, Duato P, Castillo JR (2011) An electrochemical competitive biosensor for ochratoxin a based on a DNA biotinylated aptamer. Biosens Bioelectron 26(7):3254–3259Google Scholar
  158. 158.
    Vidal JC, Bonel L, Ezquerra A, Duato P, Castillo JR (2012) An electrochemical immunosensor for ochratoxin A determination in wines based on a monoclonal antibody and paramagnetic microbeads. Anal Bioanal Chem 403(6):1585–1593Google Scholar
  159. 159.
    Min H, Qu Y-H, Li XH, Xie ZH, Wei YY, Jin LT (2007) Au-doped Fe3O4 nanoparticle immobilized acetylchblinesterase sensor for the detection of organophosphorus pesticide. Acta Chim Sin 65(20):2303–2308Google Scholar
  160. 160.
    Gan N, Yang X, Xie DH, Wu YZ, Wen WG (2010) A disposable organophosphorus pesticides enzyme biosensor based on magnetic composite nano-particles modified screen printed carbon electrode. Sensors 10(1):625–638Google Scholar
  161. 161.
    Rawal R, Chawla S, Pundir CS (2012) An electrochemical sulfite biosensor based on gold coated magnetic nanoparticles modified gold electrode. Biosens Bioelectron 31(1):144–150Google Scholar
  162. 162.
    Villalonga R, Villalonga ML, Diez P, Pingarron JM (2011) Decorating carbon nanotubes with polyethylene glycol-coated magnetic nanoparticles for implementing highly sensitive enzyme biosensors. J Mater Chem 21(34):12858–12864Google Scholar
  163. 163.
    Sahraoui Y, Barhoumi H, Maaref A, Nicole JR (2011) A novel capacitive biosensor for urea assay based on modified magnetic nanobeads. Sens Lett 9(6):2141–2146Google Scholar
  164. 164.
    Nouira W, Maaref A, Elaissari H, Vocanson F, Siadat M, Jaffrezic-Renault N (2013) Comparative study of conductometric glucose biosensor based on gold and on magnetic nanoparticles. Mater Sci Eng C Mater Biol Appl 33(1):298–303Google Scholar
  165. 165.
    Taton K, Johnson D, Guire P, Lange E, Tondra M (2009) Lateral flow immunoassay using magnetoresistive sensors. J Magn Magn Mater 321(10):1679–1682Google Scholar
  166. 166.
    Khun K, Ibupoto ZH, Lu J, Alsalhi MS, Atif M, Ansari AA, Willander M (2012) Potentiometric glucose sensor based on the glucose oxidase immobilized iron ferrite magnetic particle/chitosan composite modified gold coated glass electrode. Sensors Actuators B 173:698–703Google Scholar
  167. 167.
    Cevik E, Senel M, Baykal A (2013) Potentiometric urea biosensor based on poly(glycidylmethacrylate)-grafted iron oxide nanoparticles. Curr Appl Phys 13(1):280–286Google Scholar
  168. 168.
    Barthelmebs L, Hayat A, Limiadi AW, Marty JL, Noguer T (2011) Electrochemical DNA aptamer-based biosensor for OTA detection using superparamagnetic nanoparticles. Sensors Actuators B 156(2):932–937Google Scholar
  169. 169.
    Zhang ZX, Wang ZJ, Wang XL, Yang XR (2010) Magnetic nanoparticle-linked colorimetric aptasensor for the detection of thrombin. Sensors Actuators B 147(2):428–433Google Scholar
  170. 170.
    Chang Q, Deng KJ, Zhu LH, Jiang GD, Yu C, Tang HQ (2009) Determination of hydrogen peroxide with the aid of peroxidase-like Fe3O4 magnetic nanoparticles as the catalyst. Microchim Acta 165(3–4):299–305Google Scholar
  171. 171.
    Kim MI, Shim J, Parab HJ, Shin SC, Lee J, Park HG (2012) A convenient alcohol sensor using one-pot nanocomposite entrapping alcohol oxidase and magnetic nanoparticles as peroxidase mimetics. J Nanosci Nanotechnol 12(7):5914–5919Google Scholar
  172. 172.
    Kim MI, Shim J, Li T, Woo M-A, Cho D, Lee J, Park HG (2012) Colorimetric quantification of galactose using a nanostructured multi-catalyst system entrapping galactose oxidase and magnetic nanoparticles as peroxidase mimetics. Analyst 137(5):1137–1143Google Scholar
  173. 173.
    Xu Q, Li JP, Li SH, Pan HC (2012) A highly sensitive electrochemiluminescence immunosensor based on magnetic nanoparticles and its application in CA125 determination. J Solid State Electrochem 16(9):2891–2898Google Scholar
  174. 174.
    Zhou H, Gan N, Li T, Cao Y, Zeng S, Zheng L, Guo Z (2012) The sandwich-type electrochemiluminescence immunosensor for alpha-fetoprotein based on enrichment by Fe3O4-Au magnetic nano probes and signal amplification by CdS-Au composite nanoparticles labeled anti-AFP. Anal Chim Acta 746:107–113Google Scholar
  175. 175.
    Baratella D, Magro M, Siligaglia G, Zboril R, Salviulo G, Vianello F (2013) A glucose biosensor based on surface active maghemite nanoparticles. Biosens Bioelectron 45:13–18Google Scholar
  176. 176.
    Rossi LM, Quach AD, Rosenzweig Z (2004) Glucose oxidase-magnetite nanoparticle bioconjugate for glucose sensing. Anal Bioanal Chem 380(4):606–613Google Scholar
  177. 177.
    Magro M, Sinigaglia G, Nodari L, Tucek J, Polakova K, Marusak Z, Cardillo S, Salviulo G, Russo U, Stevanato R, Zboril R, Vianello F (2012) Charge binding of rhodamine derivative to OH- stabilized nanomaghemite: universal nanocarrier for construction of magnetofluorescent biosensors. Acta Biomater 8(6):2068–2076Google Scholar
  178. 178.
    Pospiskova K, Safarik I, Sebela M, Kuncova G (2013) Magnetic particles-based biosensor for biogenic amines using an optical oxygen sensor as a transducer. Microchim Acta 180(3–4):311–318Google Scholar
  179. 179.
    Chang Q, Zhu L, Jiang G, Tang H (2009) Sensitive fluorescent probes for determination of hydrogen peroxide and glucose based on enzyme-immobilized magnetite/silica nanoparticles. Anal Bioanal Chem 395(7):2377–2385Google Scholar
  180. 180.
    Wu SJ, Duan N, Wang ZP, Wang HX (2011) Aptamer-functionalized magnetic nanoparticle-based bioassay for the detection of ochratoxin a using upconversion nanoparticles as labels. Analyst 136(11):2306–2314Google Scholar
  181. 181.
    Wang J, Zhu Z, Munir A, Zhou HS (2011) Fe3O4 nanoparticles-enhanced SPR sensing for ultrasensitive sandwich bio-assay. Talanta 84(3):783–788Google Scholar
  182. 182.
    Liang R-P, Yao G-H, Fan L-X, Qiu J-D (2012) Magnetic Fe3O4@Au composite-enhanced surface plasmon resonance for ultrasensitive detection of magnetic nanoparticle-enriched alpha-fetoprotein. Anal Chim Acta 737:22–28Google Scholar
  183. 183.
    Shi C, Ge Y, Gu H, Ma C (2011) Highly sensitive chemiluminescent point mutation detection by circular strand-displacement amplification reaction. Biosens Bioelectron 26(12):4697–4701Google Scholar
  184. 184.
    Wang S, Su P, Huang J, Wu J, Yang Y (2013) Magnetic nanoparticles coated with immobilized alkaline phosphatase for enzymolysis and enzyme inhibition assays. J Mater Chem B 1(12):1749–1754Google Scholar
  185. 185.
    Peng R, Zhang W, Ran Q, Liang C, Jing L, Ye S, Xian Y (2011) Magnetically switchable bioelectrocatalytic system based on ferrocene grafted iron oxide nanoparticles. Langmuir 27(6):2910–2916Google Scholar
  186. 186.
    Liang C, Jing L, Shi X, Zhang Y, Xian Y (2012) Magnetically controlled bioelectrocatalytic system based on ferrocene-tagged magnetic nanoparticles by thiol-ene reaction. Electrochim Acta 69:167–173Google Scholar
  187. 187.
    Wei H, Wang E (2008) Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal Chem 80(6):2250–2254Google Scholar
  188. 188.
    Liang M, Fan K, Pan Y, Jiang H, Wang F, Yang D, Lu D, Feng J, Zhao J, Yang L, Yan X (2013) Fe3O4 magnetic nanoparticle peroxidase mimetic-based colorimetric assay for the rapid detection of organophosphorus pesticide and nerve agent. Anal Chem 85(1):308–312Google Scholar
  189. 189.
    Zhang ZX, Wang XL, Yang XR (2011) A sensitive choline biosensor using Fe3O4 magnetic nanoparticles as peroxidase mimics. Analyst 136(23):4960–4965Google Scholar
  190. 190.
    Liu BH, Cao Y, Chen DD, Kong JL, Deng JQ (2003) Amperometric biosensor based on a nanoporous ZrO2 matrix. Anal Chim Acta 478(1):59–66Google Scholar
  191. 191.
    Tong Z, Yuan R, Chai Y, Xie Y, Chen S (2007) A novel and simple biomolecules immobilization method: electro-deposition ZrO2 doped with HRP for fabrication of hydrogen peroxide biosensor. J Biotechnol 128(3):567–575Google Scholar
  192. 192.
    Tong Z, Yuan R, Chai Y, Chen S, Xie Y (2007) Direct electrochemistry of horseradish peroxidase immobilized on DNA/electrodeposited zirconium dioxide modified, gold disk electrode. Biotechnol Lett 29(5):791–795Google Scholar
  193. 193.
    Yang YH, Yang HF, Yang MH, Liu YL, Shen GL, Yu RQ (2004) Amperometric glucose biosensor based on a surface treated nanoporous ZrO2/chitosan composite film as immobilization matrix. Anal Chim Acta 525(2):213–220Google Scholar
  194. 194.
    Cai CJ, Xu MW, Bao SJ, Lei C, Jia DZ (2012) A facile route for constructing a graphene-chitosan-ZrO2 composite for direct electron transfer and glucose sensing. RSC Advances 2(21):8172–8178Google Scholar
  195. 195.
    Yang YH, Guo MM, Yang MH, Wang ZJ, Shen GL, Yu RQ (2005) Determination of pesticides in vegetable samples using an acetylcholinesterase biosensor based on nanoparticles ZrO2/chitosan composite film. Int J Environ Anal Chem 85(3):163–175Google Scholar
  196. 196.
    Wang H, Wang J, Choi D, Tang Z, Wu H, Lin Y (2009) EQCM immunoassay for phosphorylated acetylcholinesterase as a biomarker for organophosphate exposures based on selective zirconia adsorption and enzyme-catalytic precipitation. Biosens Bioelectron 24(8):2377–2383Google Scholar
  197. 197.
    Moghaddam AB, Ganjali MR, Saboury A, Moosavi-Movahedi AA, Norouzi P (2008) Electrodeposition of nickel oxide nanoparticles on glassy carbon surfaces: application to the direct electron transfer of tyrosinase. J Appl Electrochem 38(9):1233–1239Google Scholar
  198. 198.
    Shamsipur M, Asgari M, Mousavi MF, Davarkhah R (2012) A novel hydrogen peroxide sensor based on the direct electron transfer of catalase immobilized on nano-sized NiO/MWCNTs composite film. Electroanalysis 24(2):357–367Google Scholar
  199. 199.
    Arora K, Tomar M, Gupta V (2011) Highly sensitive and selective uric acid biosensor based on rf sputtered NiO thin film. Biosens Bioelectron 30(1):333–336Google Scholar
  200. 200.
    Tyagi M, Tomar M, Gupta V (2012) Influence of hole mobility on the response characteristics of p-type nickel oxide thin film based glucose biosensor. Anal Chim Acta 726:93–101Google Scholar
  201. 201.
    Singh J, Kalita P, Singh MK, Malhotra BD (2011) Nanostructured nickel oxide-chitosan film for application to cholesterol sensor. Appl Phys Lett 98(12):123702Google Scholar
  202. 202.
    Yadav SK, Singh J, Agrawal VV, Malhotra BD (2012) Nanostructured nickel oxide film for application to fish freshness biosensor. Appl Phys Lett 101(2):023703Google Scholar
  203. 203.
    Lata S, Batra B, Karwasra N, Pundir CS (2012) An amperometric H2O2 biosensor based on cytochrome c immobilized onto nickel oxide nanoparticles/carboxylated multiwalled carbon nanotubes/polyaniline modified gold electrode. Process Biochem 47(6):992–998Google Scholar
  204. 204.
    Tyagi M, Tomar M, Gupta V (2013) NiO nanoparticle-based urea biosensor. Biosens Bioelectron 41:110–115Google Scholar
  205. 205.
    Sharifi E, Salimi A, Shams E (2013) Electrocatalytic activity of nickel oxide nanoparticles as mediatorless system for NADH and ethanol sensing at physiological pH solution. Biosens Bioelectron 45:260–266Google Scholar
  206. 206.
    Yin LT, Chou JC, Chung WY, Sun TP, Hsiung KP, Hsiung SK (2001) Glucose ENFET doped with MnO2 powder. Sensors Actuators B 76(1–3):187–192Google Scholar
  207. 207.
    Luo XL, Xu JJ, Zhao W, Chen HY (2004) A novel glucose enfet based on the special reactivity of MnO2 nanoparticles. Biosens Bioelectron 19(10):1295–1300Google Scholar
  208. 208.
    Turkusic E, Kalcher J, Kahrovic E, Beyene NW, Moderegger H, Sofic E, Begic S, Kalcher K (2005) Amperometric determination of bonded glucose with an MnO2 and glucose oxidase bulk-modified screen-printed electrode using flow-injection analysis. Talanta 65(2):559–564Google Scholar
  209. 209.
    Cui X, Liu G, Lin Y (2005) Amperometric biosensors based on carbon paste electrodes modified with nanostructured mixed-valence manganese oxides and glucose oxidase. Nanomed Nanotechnol 1(2):130–135Google Scholar
  210. 210.
    Xu J-J, Feng JJ, Zhong X, Chen H-Y (2008) Low-potential detection of glucose with a biosensor based on the immobilization of glucose oxidase on polymer/manganese oxide layered nanocomposite. Electroanalysis 20(5):507–512Google Scholar
  211. 211.
    Yoshimoto M, Iida C, Kariya A, Takaki N, Nakayama M (2010) A biosensor composed of glucose oxidase-containing liposomes and MnO2-based layered nanocomposite. Electroanalysis 22(6):653–659Google Scholar
  212. 212.
    Yang X, Chen X, Zhang X, Yang W, Evans DG (2008) Intercalation of methylene blue into layered manganese oxide and application of the resulting material in a reagentless hydrogen peroxide biosensor. Sensors Actuators B 129(2):784–789Google Scholar
  213. 213.
    Xiushuang Y, Xu C, Xiong Z, Wensheng Y, Evans DG (2008) Direct electrochemistry and electrocatalysis with horseradish peroxidase immobilized in polyquaternium-manganese oxide nanosheet nanocomposite films. Sensors Actuators B 134(1):182–188Google Scholar
  214. 214.
    Mohseni G, Negahdary M, Faramarzi H, Mehrtashfar S, Habibi-Tamijani A, Nazemi SH, Morshedtalab Z, Mazdapour M, Parsania S (2012) Voltammetry behavior of modified carbon paste electrode with cytochrome c and Mn2O3 nanoparticles for hydrogen peroxide sensing. Int J Electrochem Sci 7(12):12098–12109Google Scholar
  215. 215.
    Telsnig D, Kalcher K, Leitner A, Ortner A (2013) Design of an amperometric biosensor for the determination of biogenic amines using screen printed carbon working electrodes. Electroanalysis 25(1):47–50Google Scholar
  216. 216.
    Liu ZJ, Liu BH, Kong JL, Deng JQ (2000) Probing trace phenols based on mediator-free alumina sol-gel derived tyrosinase biosensor. Anal Chem 72(19):4707–4712Google Scholar
  217. 217.
    Gao ZQ, Xie F, Shariff M, Arshad M, Ying JY (2005) A disposable glucose biosensor based on diffusional mediator dispersed in nanoparticulate membrane on screen-printed carbon electrode. Sensors Actuators B 111:339–346Google Scholar
  218. 218.
    Darder M, Aranda P, Hernandez VM, Manova E, Ruiz HE (2006) Encapsulation of enzymes in alumina membranes of controlled pore size. Thin Solid Films 495(1–2):321–326Google Scholar
  219. 219.
    Shi MH, Xu JJ, Zhang S, Liu BH, Kong JL (2006) A mediator-free screen-printed amperometric biosensor for screening of organophosphorus pesticides with flow-injection analysis (FIA) system. Talanta 68(4):1089–1095Google Scholar
  220. 220.
    Wu F, Hu Z, Wang L, Xu J, Xian Y, Tian Y, Jin L (2008) Electric field directed layer-by-layer assembly of horseradish peroxidase nanotubes via anodic aluminum oxide template. Electrochem Commun 10(4):630–634Google Scholar
  221. 221.
    Liu X, Luo L, Ding Y, Xu Y (2011) Amperometric biosensors based on alumina nanoparticles-chitosan-horseradish peroxidase nanobiocomposites for the determination of phenolic compounds. Analyst 136(4):696–701Google Scholar
  222. 222.
    Ansari SA, Husain Q (2011) Immobilization of kluyveromyces lactis beta galactosidase on concanavalin a layered aluminium oxide nanoparticles-its future aspects in biosensor applications. J Mol Catal B 70(3–4):119–126Google Scholar
  223. 223.
    Santos A, Macias G, Ferre-Borrull J, Pallares J, Marsal LF (2012) Photoluminescent enzymatic sensor based on nanoporous anodic alumina. ACS Appl Mater Interfaces 4(7):3584–3588Google Scholar
  224. 224.
    Li Y, Wei Y, Shi G, Xian Y, Jin L (2011) Facile synthesis of leaf-like cuo nanoparticles and their application on glucose biosensor. Electroanalysis 23(2):497–502Google Scholar
  225. 225.
    Ding SN, Shan D, Xue HG, Cosnier S (2010) A promising biosensing-platform based on bismuth oxide polycrystalline-modified electrode: characterization and its application in development of amperometric glucose sensor. Bioelectrochemistry 79(2):218–222Google Scholar
  226. 226.
    Saha S, Arya SK, Singh SP, Sreenivas K, Malhotra BD, Gupta V (2009) Nanoporous cerium oxide thin film for glucose biosensor. Biosens Bioelectron 24(7):2040–2045Google Scholar
  227. 227.
    Zhao JW, Qin LR, Hao YH, Guo Q, Mu F, Yan ZK (2012) Application of tubular tetrapod magnesium oxide in a biosensor for hydrogen peroxide. Microchim Acta 178(3–4):439–445Google Scholar
  228. 228.
    Periasamy AP, Ting SW, Chen SM (2011) Amperometric and impedimetric H2O2 biosensor based on horseradish peroxidase covalently immobilized at ruthenium oxide nanoparticles modified electrode. Int J Electron Sc 6(7):2688–2709Google Scholar
  229. 229.
    Lavanya N, Radhakrishnan S, Sekar C (2012) Fabrication of hydrogen peroxide biosensor based on Ni doped SnO2 nanoparticles. Biosens Bioelectron 36(1):41–47Google Scholar
  230. 230.
    Wang J, Yuan R, Chai Y, Li W, Fu P, Min L (2010) Using flowerlike polymer-copper nanostructure composite and novel organic-inorganic hybrid material to construct an amperometric biosensor for hydrogen peroxide. Collods Surf B 75(2):425–431Google Scholar
  231. 231.
    Zong S, Cao Y, Zhou Y, Ju H (2007) Hydrogen peroxide biosensor based on hemoglobin modified zirconia nanoparticles-grafted collagen matrix. Anal Chim Acta 582(2):361–366Google Scholar
  232. 232.
    Salimi A, Sharifi E, Noorbakhsh A, Soltanian S (2007) Direct electrochemistry and electrocatalytic activity of catalase immobilized onto electrodeposited nano-scale islands of nickel oxide. Biophys Chem 125(2–3):540–548Google Scholar
  233. 233.
    Qu S, Pei SP, Zhou SL, Gu YY (2009) One-step electrodeposited carbon nanotube/zirconia/myoglobin film for direct electron transfer and electrocatalysis. J Chin Chem Soc 56(4):822–827Google Scholar
  234. 234.
    Zong SZ, Cao Y, Zhou YM, Ju HX (2006) Zirconia nanoparticles enhanced grafted collagen tri-helix scaffold for unmediated biosensing of hydrogen peroxide. Langmuir 22(21):8915–8919Google Scholar
  235. 235.
    Bai YH, Du Y, Xu JJ, Chen HY (2007) Choline biosensors based on a bi-electrocatalytic property of MnO2 nanoparticles modified electrodes to H2O2. Electrochem Commun 9(10):2611–2616Google Scholar
  236. 236.
    Chen DD, Liu BH, Liu ZJ, Kong JL (2001) An amperometric biosensor for hydrogen peroxidase based on the co-immobilization of catalase and methylene blue in an Al2O3 sol-gel modified electrode. Anal Lett 34(5):687–699Google Scholar
  237. 237.
    Chen DD, Liu BH, Kong JL (2002) A hydrogen peroxide biosensor based on Al2O3 sol-gel immobilizing horseradish peroxidase and thionine. Chin J Anal Chem 30(8):958–961Google Scholar
  238. 238.
    Periasarny AP, Yang SY, Chen SM (2011) Preparation and characterization of bismuth oxide nanoparticles-multiwalled carbon nanotube composite for the development of horseradish peroxidase based H2O2 biosensor. Talanta 87:15–23Google Scholar
  239. 239.
    Salimi A, Sharifi E, Noorbakhsh A, Soltanian S (2007) Immobilization of glucose oxidase on electrodeposited nickel oxide nanoparticles: Direct electron transfer and electrocatalytic activity. Biosens Bioelectron 22(12):3146–3153Google Scholar
  240. 240.
    Yu JJ, Zhao T, Zeng BZ (2008) Mesoporous MnO2 as enzyme immobilization host for amperometric glucose biosensor construction. Electrochem Commun 10(9):1318–1321Google Scholar
  241. 241.
    Liu ZJ, Liu BH, Zhang M, Kong JL, Deng JQ (1999) Al2O3 sol-gel derived amperometric biosensor for glucose. Anal Chim Acta 392(2–3):135–141Google Scholar
  242. 242.
    Lin C, Xiong ZX, Xue H, Chen SX, Qiu H (2011) Amperometric biosensor with Al2O3/Al foil electrodes modified by Pt nanofuzz for glucose detection. Sensors Mater 23(5):293–302Google Scholar
  243. 243.
    Patil D, Dung NQ, Jung H, Ahn SY, Jang DM, Kim D (2012) Enzymatic glucose biosensor based on CeO2 nanorods synthesized by non-isothermal precipitation. Biosens Bioelectron 31(1):176–181Google Scholar
  244. 244.
    Xu JJ, Zhao W, Luo XL, Chen HY (2005) A sensitive biosensor for lactate based on layer-by-layer assembling MnO2 nanoparticles and lactate oxidase on ion-sensitive field-effect transistors. Chem Commun 41(6):792–794Google Scholar
  245. 245.
    Wang K, Xu JJ, Chen HY (2006) Biocomposite of cobalt phthalocyanine and lactate oxidase for lactate biosensing with MnO2 nanoparticles as an eliminator of ascorbic acid interference. Sensors Actuators B 114(2):1052–1058Google Scholar
  246. 246.
    Batra B, Lata S, Sunny RJS, Pundir CS (2013) Construction of an amperometric bilirubin biosensor based on covalent immobilization of bilirubin oxidase onto zirconia coated silica nanoparticles/chitosan hybrid film. Biosens Bioelectron 44:64–69Google Scholar
  247. 247.
    Singh J, Srivastava M, Kalita P, Malhotra BD (2012) A novel ternary NiFe2O4/CuO/FeO-chitosan nanocomposite as a cholesterol biosensor. Process Biochem 47(12):2189–2198Google Scholar
  248. 248.
    Batra B, Lata S, Rani S, Pundir CS (2013) Fabrication of a cytochrome c biosensor based on cytochrome oxidase/NiO-NPs/CMWCNT/PANI modified Au electrode. J Biomed Nanotechnol 9(3):409–416Google Scholar
  249. 249.
    Aydogdu G, Zeybek DK, Zeybek B, Pekyardimci S (2013) Electrochemical sensing of NADH on NiO nanoparticles-modified carbon paste electrode and fabrication of ethanol dehydrogenase-based biosensor. J Appl Electrochem 43(5):523–531Google Scholar
  250. 250.
    Rawal R, Chawla S, Malik P, Pundir CS (2012) An amperometric biosensor based on laccase immobilized onto MnO(2)NPs/CMWCNT/PANI modified au electrode. Int J Biol Macromol 51(1–2):175–181Google Scholar
  251. 251.
    Zejli H, De Cisneros J, Naranjo-Rodriguez I, Liu BH, Temsamani KR, Marty JL (2008) Phenol biosensor based on sonogel-carbon transducer with tyrosinase alumina sol-gel immobilization. Anal Chim Acta 612(2):198–203Google Scholar
  252. 252.
    Wan Y, Qi P, Zhang D, Wu JJ, Wang Y (2012) Manganese oxide nanowire-mediated enzyme-linked immunosorbent assay. Biosens Bioelectron 33(1):69–74Google Scholar
  253. 253.
    Yang ZP, Si SH, Dai HJ, Zhang CJ (2007) Piezoelectric urea biosensor based on immobilization of urease onto nanoporous alumina membranes. Biosens Bioelectron 22(12):3283–3287Google Scholar
  254. 254.
    Jindal K, Tomar M, Gupta V (2012) CuO thin film based uric acid biosensor with enhanced response characteristics. Biosens Bioelectron 38(1):11–18Google Scholar
  255. 255.
    Luong JHT, Male KB, Glennon JD (2008) Biosensor technology: technology push versus market pull. Biotechnol Adv 26(5):492–500Google Scholar
  256. 256.
    Karel H, Fernandez-Lafuente R (2011) Control of protein immobilization: coupling immobilization and site-directed mutagenesis to improve biocatalyst or biosensor performance. Enzyme Microb Technol 48:107–122Google Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Xinhao Shi
    • 1
  • Wei Gu
    • 1
  • Bingyu Li
    • 1
  • Ningning Chen
    • 1
  • Kai Zhao
    • 1
  • Yuezhong Xian
    • 1
    Email author
  1. 1.Department of ChemistryEast China Normal UniversityShanghaiChina

Personalised recommendations