Microchimica Acta

, Volume 180, Issue 15–16, pp 1517–1522

Protein-directed in situ synthesis of platinum nanoparticles with superior peroxidase-like activity, and their use for photometric determination of hydrogen peroxide

Short Communication

Abstract

Platinum nanoparticles (Pt-NPs) with sizes in the range from 10 to 30 nm were synthesized using protein-directed one-pot reduction. The model globular protein bovine serum albumin (BSA) was exploited as the template, and the resulting BSA/Pt-NPs were studied by transmission electron microscopy, energy dispersive X-ray spectroscopy, and resonance Rayleigh scattering spectroscopy. The modified nanoparticles display a peroxidase-like activity that was exploited in a rapid method for the colorimetric determination of hydrogen peroxide which can be detected in the 50 μM to 3 mM concentration range. The limit of detection is 7.9 μM, and the lowest concentration that can be visually detected is 200 μM.

Figure

Pt-NPs were synthesized using BSA-directed one-pot reduction and BSA/Pt-NPs composite can effectively catalyze the oxidation of TMB producing blue solution in the presence of H2O2.

Keywords

Bovine serum albumin In situ synthesis Platinum nanoparticles Colorimetric detection 

Supplementary material

604_2013_1068_MOESM1_ESM.doc (982 kb)
ESM 1(DOC 982 kb)

References

  1. 1.
    Shang L, Wang Y, Jiang J, Dong S (2007) pH-dependent protein conformational changes in albumin: gold nanoparticle bioconjugates: a spectroscopic study. Langmuir 23:2714–2721CrossRefGoogle Scholar
  2. 2.
    Ivey DG (1998) Microstructural characterization of Au/Sn solder for packaging in optoelectronic applications. Micron 29:281–287CrossRefGoogle Scholar
  3. 3.
    Breuer S, Pfuller C, Flissikowski T, Brandt O, Grahn HT, Geelhaar L, Riechert H (2011) Suitability of Au- and self-assisted GaAs nanowires for optoelectronic applications. Nano Lett 11(3):1276–1279CrossRefGoogle Scholar
  4. 4.
    Haruta M (2011) Spiers memorial lecture: role of perimeter interfaces in catalysis by gold nanoparticles. Faraday Discuss 152:11CrossRefGoogle Scholar
  5. 5.
    Li W, Sun C, Hou B, Zhou X (2012) Room temperature synthesis and catalytic properties of surfactant-modified Ag nanoparticles. Int J Spectrosc 2012:1–7CrossRefGoogle Scholar
  6. 6.
    Suwa T, Ozawa S, Ueda M, Ando N, Kitajima M (1998) Magnetic resonance imaging of esophageal squamous cell carcinoma using magnetite particles coated with anti-epidermal growth factor receptor antibody. Int J Cancer 77:626–634CrossRefGoogle Scholar
  7. 7.
    Zhang J, Liu X, Guo X, Wu S, Wang S (2010) A general approach to fabricate diverse noble-metal (Au, Pt, Ag, Pt/Au)/Fe2O3 hybrid nanomaterials. Chemistry 16(27):8108–8116CrossRefGoogle Scholar
  8. 8.
    Talley CE, Jackson JB, Oubre C, Grady NK, Hollars CW, Lane SM, Huser TR, Nordlander P, Halas NJ (2005) Surface-enhanced raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano Lett 5:1569–1574CrossRefGoogle Scholar
  9. 9.
    Jv Y, Li B, Cao R (2010) Positively-charged gold nanoparticles as peroxidase mimic and their application in hydrogen peroxide and glucose detection. Chem Commun 46(42):8017–8019CrossRefGoogle Scholar
  10. 10.
    Chen W, Hong L, Liu A-L, Liu J-Q, Lin X-H, Xia X-H (2012) Enhanced chemiluminescence of the luminol-hydrogen peroxide system by colloidal cupric oxide nanoparticles as peroxidase mimic. TalantaGoogle Scholar
  11. 11.
    Ma M, Zhang Y, Gu N (2011) Peroxidase-like catalytic activity of cubic Pt nanocrystals. Colloids Surf, A Physicochem Eng Asp 373(1–3):6–10CrossRefGoogle Scholar
  12. 12.
    Xu F, Sun Y, Zhang Y, Shi Y, Wen Z, Li Z (2011) Graphene-Pt nanocomposite for nonenzymatic detection of hydrogen peroxide with enhanced sensitivity. Electrochem Commun 13(10):1131–1134CrossRefGoogle Scholar
  13. 13.
    Polsky R, Gill R, Kaganovsky L, Willner I (2006) Nucleic acid-functionalized Pt nanoparticles: catalytic labels for the amplified electrochemical detection of biomolecules. Anal Chem 78:2268–2271CrossRefGoogle Scholar
  14. 14.
    Chen X, Zhou X, Hu J (2012) Pt-DNA complexes as peroxidase mimetics and their applications in colorimetric detection of H2O2 and glucose. Anal Methods 4(7):2183–2187CrossRefGoogle Scholar
  15. 15.
    Ahmadi TS, Wang ZL, Green TC, Henglein A, EI-Sayed MA (1996) Shaped-controlled synthesis of colloidal platinum nanoparticles. Science 272:1924–1926CrossRefGoogle Scholar
  16. 16.
    Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298(5601):2176–2179CrossRefGoogle Scholar
  17. 17.
    Xie J, Zheng Y, Ying JY (2009) Protein-directed synthesis of highly fluorescent gold nanoclusters. J Am Chem Soc 131:888–889CrossRefGoogle Scholar
  18. 18.
    Goswami N, Giri A, Bootharaju MS, Xavier PL, Pradeep T, Pal SK (2011) Copper quantum clusters in protein matrix: potential sensor of Pb2+ ion. Anal Chem 83(24):9676–9680CrossRefGoogle Scholar
  19. 19.
    Xie J, Lee JY, Wang DIC (2007) Synthesis of single-crystalline gold nanoplates in aqueous solutions through biomineralization by serum albumin protein. J Phys Chem C 111:10226–10232CrossRefGoogle Scholar
  20. 20.
    Huang P, Yang DP, Zhang C, Lin J, He M, Bao L, Cui D (2011) Protein-directed one-pot synthesis of Ag microspheres with good biocompatibility and enhancement of radiation effects on gastric cancer cells. Nanoscale 3(9):3623–3626CrossRefGoogle Scholar
  21. 21.
    Fan J, Yin JJ, Ning B, Wu X, Hu Y, Ferrari M, Anderson GJ, Wei J, Zhao Y, Nie G (2011) Direct evidence for catalase and peroxidase activities of ferritin-platinum nanoparticles. Biomaterials 32(6):1611–1618CrossRefGoogle Scholar
  22. 22.
    Liu X, Wang Q, Zhao H, Zhang L, Su Y, Lv Y (2012) BSA-templated MnO2 nanoparticles as both peroxidase and oxidase mimics. Analyst 137(19):4552–4558CrossRefGoogle Scholar
  23. 23.
    Liu S, Zhou G, Liu Z (1999) Resonance Rayleigh scattering for the determination of cationic surfactants with Eosin Y. Fresenius J Anal Chem 363:651–654CrossRefGoogle Scholar
  24. 24.
    Liu S, Luo H, Li N, Liu Z, Zheng W (2001) Resonance Rayleigh scattering study of the interaction of heparin with some basic diphenyl naphthylmethane dyes. Anal Chem 73:3907–3914CrossRefGoogle Scholar
  25. 25.
    Liu S, Yang R, Liu Q (2001) Resonance rayleilgh method for the determination proteins with orange G. Anal Sci 17:243–247CrossRefGoogle Scholar
  26. 26.
    Ma CQ, An Li K, Tong SY (1997) Enhancement of Rayleigh light scattering of acid chrome blue K by proteins and protein assay by the scattering technique. Analyst 122(4):361–364CrossRefGoogle Scholar
  27. 27.
    Gao Z, Xu M, Hou L, Chen G, Tang D (2013) Irregular-shaped platinum nanoparticles as peroxidase mimics for highly efficient colorimetric immunoassay. Anal Chim Acta 776:79–86CrossRefGoogle Scholar
  28. 28.
    Che X, Yuan R, Chai Y, Ma L, Li W, Li J (2009) Hydrogen peroxide sensor based on horseradish peroxidase immobilized on an electrode modified with DNA-L-cysteine-gold-platinum nanoparticles in polypyrrole film. Microchim Acta 167(3–4):159–165Google Scholar
  29. 29.
    Li J, Yuan R, Chai Y, Zhang T, Che X (2010) Direct electrocatalytic reduction of hydrogen peroxide at a glassy carbon electrode modified with polypyrrole nanowires and platinum hollow nanospheres. Microchim Acta 171(1–2):125–131Google Scholar
  30. 30.
    Zhong H, Yuan R, Chai Y, Zhang Y, Wang C, Jia F (2011) Non-enzymatic hydrogen peroxide amperometric sensor based on a glassy carbon electrode modified with an MWCNT/polyaniline composite film and platinum nanoparticles. Microchim Acta 176(3–4):389–395Google Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Lijian Chen
    • 1
  • Nan Wang
    • 1
  • Xindong Wang
    • 1
  • Shiyun Ai
    • 1
  1. 1.College of Chemistry and Material ScienceShandong Agricultural UniversityTaianPeople’s Republic of China

Personalised recommendations