Microchimica Acta

, Volume 180, Issue 15–16, pp 1517–1522

Protein-directed in situ synthesis of platinum nanoparticles with superior peroxidase-like activity, and their use for photometric determination of hydrogen peroxide

Short Communication


Platinum nanoparticles (Pt-NPs) with sizes in the range from 10 to 30 nm were synthesized using protein-directed one-pot reduction. The model globular protein bovine serum albumin (BSA) was exploited as the template, and the resulting BSA/Pt-NPs were studied by transmission electron microscopy, energy dispersive X-ray spectroscopy, and resonance Rayleigh scattering spectroscopy. The modified nanoparticles display a peroxidase-like activity that was exploited in a rapid method for the colorimetric determination of hydrogen peroxide which can be detected in the 50 μM to 3 mM concentration range. The limit of detection is 7.9 μM, and the lowest concentration that can be visually detected is 200 μM.


Pt-NPs were synthesized using BSA-directed one-pot reduction and BSA/Pt-NPs composite can effectively catalyze the oxidation of TMB producing blue solution in the presence of H2O2.


Bovine serum albumin In situ synthesis Platinum nanoparticles Colorimetric detection 

Supplementary material

604_2013_1068_MOESM1_ESM.doc (982 kb)
ESM 1(DOC 982 kb)


  1. 1.
    Shang L, Wang Y, Jiang J, Dong S (2007) pH-dependent protein conformational changes in albumin: gold nanoparticle bioconjugates: a spectroscopic study. Langmuir 23:2714–2721CrossRefGoogle Scholar
  2. 2.
    Ivey DG (1998) Microstructural characterization of Au/Sn solder for packaging in optoelectronic applications. Micron 29:281–287CrossRefGoogle Scholar
  3. 3.
    Breuer S, Pfuller C, Flissikowski T, Brandt O, Grahn HT, Geelhaar L, Riechert H (2011) Suitability of Au- and self-assisted GaAs nanowires for optoelectronic applications. Nano Lett 11(3):1276–1279CrossRefGoogle Scholar
  4. 4.
    Haruta M (2011) Spiers memorial lecture: role of perimeter interfaces in catalysis by gold nanoparticles. Faraday Discuss 152:11CrossRefGoogle Scholar
  5. 5.
    Li W, Sun C, Hou B, Zhou X (2012) Room temperature synthesis and catalytic properties of surfactant-modified Ag nanoparticles. Int J Spectrosc 2012:1–7CrossRefGoogle Scholar
  6. 6.
    Suwa T, Ozawa S, Ueda M, Ando N, Kitajima M (1998) Magnetic resonance imaging of esophageal squamous cell carcinoma using magnetite particles coated with anti-epidermal growth factor receptor antibody. Int J Cancer 77:626–634CrossRefGoogle Scholar
  7. 7.
    Zhang J, Liu X, Guo X, Wu S, Wang S (2010) A general approach to fabricate diverse noble-metal (Au, Pt, Ag, Pt/Au)/Fe2O3 hybrid nanomaterials. Chemistry 16(27):8108–8116CrossRefGoogle Scholar
  8. 8.
    Talley CE, Jackson JB, Oubre C, Grady NK, Hollars CW, Lane SM, Huser TR, Nordlander P, Halas NJ (2005) Surface-enhanced raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano Lett 5:1569–1574CrossRefGoogle Scholar
  9. 9.
    Jv Y, Li B, Cao R (2010) Positively-charged gold nanoparticles as peroxidase mimic and their application in hydrogen peroxide and glucose detection. Chem Commun 46(42):8017–8019CrossRefGoogle Scholar
  10. 10.
    Chen W, Hong L, Liu A-L, Liu J-Q, Lin X-H, Xia X-H (2012) Enhanced chemiluminescence of the luminol-hydrogen peroxide system by colloidal cupric oxide nanoparticles as peroxidase mimic. TalantaGoogle Scholar
  11. 11.
    Ma M, Zhang Y, Gu N (2011) Peroxidase-like catalytic activity of cubic Pt nanocrystals. Colloids Surf, A Physicochem Eng Asp 373(1–3):6–10CrossRefGoogle Scholar
  12. 12.
    Xu F, Sun Y, Zhang Y, Shi Y, Wen Z, Li Z (2011) Graphene-Pt nanocomposite for nonenzymatic detection of hydrogen peroxide with enhanced sensitivity. Electrochem Commun 13(10):1131–1134CrossRefGoogle Scholar
  13. 13.
    Polsky R, Gill R, Kaganovsky L, Willner I (2006) Nucleic acid-functionalized Pt nanoparticles: catalytic labels for the amplified electrochemical detection of biomolecules. Anal Chem 78:2268–2271CrossRefGoogle Scholar
  14. 14.
    Chen X, Zhou X, Hu J (2012) Pt-DNA complexes as peroxidase mimetics and their applications in colorimetric detection of H2O2 and glucose. Anal Methods 4(7):2183–2187CrossRefGoogle Scholar
  15. 15.
    Ahmadi TS, Wang ZL, Green TC, Henglein A, EI-Sayed MA (1996) Shaped-controlled synthesis of colloidal platinum nanoparticles. Science 272:1924–1926CrossRefGoogle Scholar
  16. 16.
    Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298(5601):2176–2179CrossRefGoogle Scholar
  17. 17.
    Xie J, Zheng Y, Ying JY (2009) Protein-directed synthesis of highly fluorescent gold nanoclusters. J Am Chem Soc 131:888–889CrossRefGoogle Scholar
  18. 18.
    Goswami N, Giri A, Bootharaju MS, Xavier PL, Pradeep T, Pal SK (2011) Copper quantum clusters in protein matrix: potential sensor of Pb2+ ion. Anal Chem 83(24):9676–9680CrossRefGoogle Scholar
  19. 19.
    Xie J, Lee JY, Wang DIC (2007) Synthesis of single-crystalline gold nanoplates in aqueous solutions through biomineralization by serum albumin protein. J Phys Chem C 111:10226–10232CrossRefGoogle Scholar
  20. 20.
    Huang P, Yang DP, Zhang C, Lin J, He M, Bao L, Cui D (2011) Protein-directed one-pot synthesis of Ag microspheres with good biocompatibility and enhancement of radiation effects on gastric cancer cells. Nanoscale 3(9):3623–3626CrossRefGoogle Scholar
  21. 21.
    Fan J, Yin JJ, Ning B, Wu X, Hu Y, Ferrari M, Anderson GJ, Wei J, Zhao Y, Nie G (2011) Direct evidence for catalase and peroxidase activities of ferritin-platinum nanoparticles. Biomaterials 32(6):1611–1618CrossRefGoogle Scholar
  22. 22.
    Liu X, Wang Q, Zhao H, Zhang L, Su Y, Lv Y (2012) BSA-templated MnO2 nanoparticles as both peroxidase and oxidase mimics. Analyst 137(19):4552–4558CrossRefGoogle Scholar
  23. 23.
    Liu S, Zhou G, Liu Z (1999) Resonance Rayleigh scattering for the determination of cationic surfactants with Eosin Y. Fresenius J Anal Chem 363:651–654CrossRefGoogle Scholar
  24. 24.
    Liu S, Luo H, Li N, Liu Z, Zheng W (2001) Resonance Rayleigh scattering study of the interaction of heparin with some basic diphenyl naphthylmethane dyes. Anal Chem 73:3907–3914CrossRefGoogle Scholar
  25. 25.
    Liu S, Yang R, Liu Q (2001) Resonance rayleilgh method for the determination proteins with orange G. Anal Sci 17:243–247CrossRefGoogle Scholar
  26. 26.
    Ma CQ, An Li K, Tong SY (1997) Enhancement of Rayleigh light scattering of acid chrome blue K by proteins and protein assay by the scattering technique. Analyst 122(4):361–364CrossRefGoogle Scholar
  27. 27.
    Gao Z, Xu M, Hou L, Chen G, Tang D (2013) Irregular-shaped platinum nanoparticles as peroxidase mimics for highly efficient colorimetric immunoassay. Anal Chim Acta 776:79–86CrossRefGoogle Scholar
  28. 28.
    Che X, Yuan R, Chai Y, Ma L, Li W, Li J (2009) Hydrogen peroxide sensor based on horseradish peroxidase immobilized on an electrode modified with DNA-L-cysteine-gold-platinum nanoparticles in polypyrrole film. Microchim Acta 167(3–4):159–165Google Scholar
  29. 29.
    Li J, Yuan R, Chai Y, Zhang T, Che X (2010) Direct electrocatalytic reduction of hydrogen peroxide at a glassy carbon electrode modified with polypyrrole nanowires and platinum hollow nanospheres. Microchim Acta 171(1–2):125–131Google Scholar
  30. 30.
    Zhong H, Yuan R, Chai Y, Zhang Y, Wang C, Jia F (2011) Non-enzymatic hydrogen peroxide amperometric sensor based on a glassy carbon electrode modified with an MWCNT/polyaniline composite film and platinum nanoparticles. Microchim Acta 176(3–4):389–395Google Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Lijian Chen
    • 1
  • Nan Wang
    • 1
  • Xindong Wang
    • 1
  • Shiyun Ai
    • 1
  1. 1.College of Chemistry and Material ScienceShandong Agricultural UniversityTaianPeople’s Republic of China

Personalised recommendations