Microchimica Acta

, Volume 180, Issue 13–14, pp 1201–1209

Modelling the size and polydispersity of magnetic hybrid nanoparticles for luminescent sensing of oxygen

  • Marta Marín-Suárez
  • María C. Arias-Martos
  • Teresa Galeano-Díaz
  • Jorge F. Fernández-Sánchez
  • Alberto Fernández-Gutiérrez
Original Paper

Abstract

We report on a strategy to model both the size (d) and the polydispersity (PdI) of magnetic oxygen-sensitive nanoparticles with a typical size of 200 nm in order to increase the surface area. The strategy is based on experimental design and Response Surface Methodology. Nanoparticles were prepared by miniemulsion solvent evaporation of solutions of poly(styrene-co-maleic anhydride). Features of this strategy include (1) a quick selection of the most important variables that govern d and PdI; (2) a better understanding of the parameters that affect the performance of the polymer; and (3) optimized conditions for the synthesis of nanoparticles of targeted d and PdI. The results were used to produce nanoparticles in sizes that range from 100 to 300 nm and with small polydispersity. The addition of a platinum porphyrin complex that acts as a luminescent probe for oxygen and of magnetite (Fe3O4) to the polymeric particles, did not affect d and PdI, thus demonstrating that this strategy simplifies their synthesis. The resulting luminescent and magnetic sensor nanoparticles respond to dissolved oxygen with sensitivity (Stern-Volmer constant) of around 35 bar−1.

Keywords

Response surface methodology Experimental design Nanoparticles Oxygen sensing Size Polydispersity 

Supplementary material

604_2013_1054_MOESM1_ESM.docx (43 kb)
ESM 1(DOCX 43 kb)

References

  1. 1.
    Amao Y (2003) Probes and polymers for optical sensing of oxygen. Microchim Acta 143(1):1–12. doi:10.1007/s00604-003-0037-x CrossRefGoogle Scholar
  2. 2.
    Marín-Suárez M, Curchod BFE, Tavernelli I, Rothlisberger U, Scopelliti R, Jung I, Di Censo D, Grätzel M, Fernández-Sánchez JF, Fernández-Gutiérrez A, Nazeeruddin MK, Baranoff E (2012) Nanocomposites containing neutral blue emitting cyclometalated iridium (III) emitters for oxygen sensing. Chem Mater 24(12):2330–2338. doi:10.1021/cm300575z CrossRefGoogle Scholar
  3. 3.
    Wolfbeis OS (2005) Materials for fluorescence-based optical chemical sensors. J Mater Chem 15(27–28):2657–2669CrossRefGoogle Scholar
  4. 4.
    Borchert N, Hempel A, Walsh H, Kerry JP, Papkovsky DB (2012) High throughput quality and safety assessment of packaged green produce using two optical oxygen sensor based systems. Food Control 28(1):87–93CrossRefGoogle Scholar
  5. 5.
    Mistlberger G, Koren K, Borisov SM, Klimant I (2010) Magnetically remote-controlled optical sensor spheres for monitoring oxygen or pH. Anal Chem 82(5):2124–2128. doi:10.1021/Ac902393u CrossRefGoogle Scholar
  6. 6.
    Marín-SuárezdelToro M, Fernández-Sánchez JF, Baranoff E, Nazeeruddin MK, Graetzel M, Fernández-Gutierrez A (2010) Novel luminescent Ir(III) dyes for developing highly sensitive oxygen sensing films. Talanta 82(2):620–626CrossRefGoogle Scholar
  7. 7.
    Ergeneman O, Chatzipirpiridis G, Pokki J, Marin-Suarez M, Sotiriou GA, Medina-Rodríguez S, Fernández-Sanchez JF, Fernandez-Gutierrez A, Pane S, Nelson BJ (2012) In vitro oxygen sensing using intraocular microrobots. IEEE Trans Biomed Eng 59(11):3104–3109. doi:10.1109/tbme.2012.2216264 CrossRefGoogle Scholar
  8. 8.
    Esipova TV, Karagodov A, Miller J, Wilson DF, Busch TM, Vinogradov SA (2011) Two new “protected” oxyphors for biological oximetry: properties and application in tumor imaging. Anal Chem 83(22):8756–8765. doi:10.1021/ac2022234 CrossRefGoogle Scholar
  9. 9.
    Xu H, Aylott JW, Kopelman R, Miller TJ, Philbert MA (2001) A real-time ratiometric method for the determination of molecular oxygen inside living cells using sol-gel-based spherical optical nanosensors with applications to rat C6 glioma. Anal Chem 73(17):4124–4133. doi:10.1021/ac0102718 CrossRefGoogle Scholar
  10. 10.
    Borisov SM, Mayr T, Klimant I (2008) Poly (styrene-block-vinylpyrrolidone) beads as a versatile material for simple fabrication of optical nanosensors. Anal Chem 80(3):573–582. doi:10.1021/ac071374e CrossRefGoogle Scholar
  11. 11.
    Borisov SM, Klimant I (2008) Optical nanosensors-smart tools in bioanalytics. Analyst 133(10):1302–1307CrossRefGoogle Scholar
  12. 12.
    Koo Lee Y-E, Kopelman R (2012) Chapter twenty-one—nanoparticle PEBBLE sensors in live cells. In: Methods in enzymology, vol Volume 504. Academic Press, pp 419–470. doi: http://dx.doi.org/10.1016/B978-0-12-391857-4.00021-5
  13. 13.
    Medina-Castillo AL, Mistlberger G, Fernández-Sánchez JF, Segura-Carretero A, Klimant I, Fernández-Gutiérrez A (2009) Novel strategy to design magnetic, molecular imprinted polymers with well-controlled structure for the application in optical sensors. Macromolecules 43(1):55–61. doi:10.1021/ma902095s CrossRefGoogle Scholar
  14. 14.
    Mistlberger G, Koren K, Scheucher E, Aigner D, Borisov SM, Zankel A, Pölt P, Klimant I (2010) Multifunctional magnetic optical sensor particles with tunable sizes for monitoring metabolic parameters and as a basis for nanotherapeutics. Adv Funct Mater 20(11):1842–1851. doi:10.1002/adfm.201000321 CrossRefGoogle Scholar
  15. 15.
    Valero-Navarro Á, Gómez-Romero M, Fernández-Sánchez JF, Cormack PAG, Segura-Carretero A, Fernández-Gutiérrez A (2011) Synthesis of caffeic acid molecularly imprinted polymer microspheres and high-performance liquid chromatography evaluation of their sorption properties. J Chromatogr A 1218(41):7289–7296CrossRefGoogle Scholar
  16. 16.
    Steiner M-S, Duerkop A, Wolfbeis OS (2011) Optical methods for sensing glucose. Chem Soc Rev 40(9):4805–4839CrossRefGoogle Scholar
  17. 17.
    Dmitriev R, Papkovsky D (2012) Optical probes and techniques for O2 measurement in live cells and tissue. Cell Mol Life Sci 69(12):2025–2039. doi:10.1007/s00018-011-0914-0 CrossRefGoogle Scholar
  18. 18.
    Zhang P, Chen J, Huang F, Zeng Z, Hu J, Yi P, Zeng F, Wu S (2013) One-pot fabrication of polymer nanoparticle-based chemosensors for Cu2+ detection in aqueous media. Polym Chem 4(7):2325–2332CrossRefGoogle Scholar
  19. 19.
    Wang X-d, Stolwijk JA, Lang T, Sperber M, Meier RJ, Wegener J, Wolfbeis OS (2012) Ultra-small, highly stable, and sensitive dual nanosensors for imaging intracellular oxygen and pH in cytosol. J Am Chem Soc 134(41):17011–17014. doi:10.1021/ja308830e CrossRefGoogle Scholar
  20. 20.
    Napp J, Behnke T, Fischer L, Würth C, Wottawa M, Katschinski DM, Alves F, Resch-Genger U, Schäferling M (2011) Targeted luminescent near-infrared polymer-nanoprobes for in vivo imaging of tumor hypoxia. Anal Chem 83(23):9039–9046. doi:10.1021/ac201870b CrossRefGoogle Scholar
  21. 21.
    Fercher A, Borisov SM, Zhdanov AV, Klimant I, Papkovsky DB (2011) Intracellular O2 sensing probe based on cell-penetrating phosphorescent nanoparticles. ACS Nano 5(7):5499–5508. doi:10.1021/nn200807g CrossRefGoogle Scholar
  22. 22.
    Kondrashina AV, Dmitriev RI, Borisov SM, Klimant I, O’Brien I, Nolan YM, Zhdanov AV, Papkovsky DB (2012) A phosphorescent nanoparticle-based probe for sensing and imaging of (Intra) cellular oxygen in multiple detection modalities. Adv Funct Mater 22(23):4931–4939. doi:10.1002/adfm.201201387 CrossRefGoogle Scholar
  23. 23.
    Acosta MA, Ymele-Leki P, Kostov YV, Leach JB (2009) Fluorescent microparticles for sensing cell microenvironment oxygen levels within 3D scaffolds. Biomaterials 30(17):3068–3074. doi:10.1016/j.biomaterials.2009.02.021 CrossRefGoogle Scholar
  24. 24.
    Anker JN, Koo YE, Kopelman R (2007) Magnetically controlled sensor swarms. Sensors Actuators B Chem 121(1):83–92CrossRefGoogle Scholar
  25. 25.
    Koren K, Mistlberger G, Aigner D, Borisov S, Zankel A, Pölt P, Klimant I (2010) Characterization of micrometer-sized magnetic optical sensor particles produced via spray-drying. Monatsh Chem Chem Mon 141(6):691–697. doi:10.1007/s00706-010-0262-z CrossRefGoogle Scholar
  26. 26.
    Mistlberger G, Borisov SM, Klimant I (2009) Enhancing performance in optical sensing with magnetic nanoparticles. Sensors Actuators B Chem 139(1):174–180CrossRefGoogle Scholar
  27. 27.
    Nasongkla N, Bey E, Ren J, Ai H, Khemtong C, Guthi JS, Chin S-F, Sherry AD, Boothman DA, Gao J (2006) Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett 6(11):2427–2430. doi:10.1021/nl061412u CrossRefGoogle Scholar
  28. 28.
    Kopelman R, Lee Koo Y-E, Philbert M, Moffat BA, Ramachandra Reddy G, McConville P, Hall DE, Chenevert TL, Bhojani MS, Buck SM, Rehemtulla A, Ross BD (2005) Multifunctional nanoparticle platforms for in vivo MRI enhancement and photodynamic therapy of a rat brain cancer. J Magn Magn Mater 293(1):404–410CrossRefGoogle Scholar
  29. 29.
    Kim J, Lee JE, Lee SH, Yu JH, Lee JH, Park TG, Hyeon T (2008) Designed fabrication of a multifunctional polymer nanomedical platform for simultaneous cancer- targeted imaging and magnetically guided drug delivery. Adv Mater 20(3):478–483. doi:10.1002/adma.200701726 CrossRefGoogle Scholar
  30. 30.
    Hurst SJ, Lee Y-E, Kopelman R (2011) Polymeric nanoparticles for photodynamic therapy. In: Biomedical nanotechnology, vol 726. Methods in molecular biology. Humana Press, pp 151–178. doi: 10.1007/978-1-61779-052-2_11
  31. 31.
    He C, Yin L, Tang C, Yin C (2012) Size-dependent absorption mechanism of polymeric nanoparticles for oral delivery of protein drugs. Biomaterials 33(33):8569–8578CrossRefGoogle Scholar
  32. 32.
    Kim S-H, Cho Y-S, Jeon S-J, Eun TH, Yi G-R, Yang S-M (2008) Microspheres with tunable refractive index by controlled assembly of nanoparticles. Adv Mater 20(17):3268–3273. doi:10.1002/adma.200702622 CrossRefGoogle Scholar
  33. 33.
    Marín-Suárez M, Medina-Castillo AL, Fernández-Sánchez JF, Fernández-Gutiérrez A (2012) Atom-Transfer Radical Polymerisation (ATRP) as a tool for the development of optical sensing phases. Israel J Chem 52(3–4):264–275. doi:10.1002/ijch.201100123 CrossRefGoogle Scholar
  34. 34.
    Wang X-d, Meier RJ, Wolfbeis OS (2012) A fluorophore-doped polymer nanomaterial for referenced imaging of pH and temperature with sub-micrometer resolution. Adv Funct Mater 22(20):4202–4207. doi:10.1002/adfm.201200813 CrossRefGoogle Scholar
  35. 35.
    Roberge S, Dubé MA (2006) The effect of particle size and composition on the performance of styrene/butyl acrylate miniemulsion-based PSAs. Polymer 47(3):799–807CrossRefGoogle Scholar
  36. 36.
    Rao JP, Geckeler KE (2011) Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci 36(7):887–913. doi:10.1016/j.progpolymsci.2011.01.001 CrossRefGoogle Scholar
  37. 37.
    Mistlberger G, Medina-Castillo A, Borisov S, Mayr T, Fernández-Gutiérrez A, Fernández-Sánchez J, Klimant I (2010) Mini-emulsion solvent evaporation: a simple and versatile way to magnetic nanosensors. Microchim Acta 172(3):299–308. doi:10.1007/s00604-010-0492-0 Google Scholar
  38. 38.
    Borisov SM, Mayr T, Mistlberger G, Waich K, Koren K, Chojnacki P, Klimant I (2009) Precipitation as a simple and versatile method for preparation of optical nanochemosensors. Talanta 79(5):1322–1330CrossRefGoogle Scholar
  39. 39.
    Chiewpattanakul P, Covis R, Vanderesse R, Thanomsub B, Marie E, Durand A (2010) Design of polymeric nanoparticles for the encapsulation of monoacylglycerol. Colloid Polym Sci 288(9):959–967. doi:10.1007/s00396-010-2216-8 CrossRefGoogle Scholar
  40. 40.
    Bally F, Garg DK, Serra CA, Hoarau Y, Anton N, Brochon C, Parida D, Vandamme T, Hadziioannou G (2013) Improved size-tunable preparation of polymeric nanoparticles by microfluidic nanoprecipitation. Polym (UK) 53(22):5045–5051CrossRefGoogle Scholar
  41. 41.
    Medina-Castillo AL, Fernández-Sánchez JF, Segura-Carretero A, Fernández-Gutiérrez A (2010) Micrometer and submicrometer particles prepared by precipitation polymerization: thermodynamic model and experimental evidence of the relation between Flory’s parameter and particle size. Macromolecules 43(13):5804–5813. doi:10.1021/ma100841c CrossRefGoogle Scholar
  42. 42.
    Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA (2008) Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76(5):965–977CrossRefGoogle Scholar
  43. 43.
    Ramírez LP, Landfester K (2003) Magnetic polystyrene nanoparticles with a high magnetite content obtained by miniemulsion processes. Macromol Chem Phys 204(1):22–31. doi:10.1002/macp.200290052 CrossRefGoogle Scholar
  44. 44.
    Amao Y, Miyashita T, Okura I (2001) Platinum tetrakis(pentafluorophenyl)porphyrin immobilized in polytrifluoroethylmethacrylate film as a photostable optical oxygen detection material. J Fluor Chem 107(1):101–106CrossRefGoogle Scholar
  45. 45.
    Mistlberger G, Chojnacki P, Klimant I (2008) Magnetic sensor particles: an optimized magnetic separator with an optical window. J Phys D Appl Phys 41(8):085003CrossRefGoogle Scholar
  46. 46.
    Khuri AI, Mukhopadhyay S (2010) Response surface methodology. Wiley Interdiscip Rev Comput Stat 2(2):128–149. doi:10.1002/wics.73 CrossRefGoogle Scholar
  47. 47.
    Hendriks MMWB, de Boer JH, Smilde AK, Doornbos DA (1992) Multicriteria decision making. Chemom Intell Lab Syst 16(3):175–191CrossRefGoogle Scholar
  48. 48.
    Lakowicz JR (2006) Principles of fluorescence spectroscopy, vol 1. 3rd edn. SpringerGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Marta Marín-Suárez
    • 1
  • María C. Arias-Martos
    • 1
  • Teresa Galeano-Díaz
    • 2
  • Jorge F. Fernández-Sánchez
    • 1
  • Alberto Fernández-Gutiérrez
    • 1
  1. 1.Department of Analytical ChemistryUniversity of GranadaGranadaSpain
  2. 2.Department of Analytical ChemistryUniversity of ExtremaduraBadajozSpain

Personalised recommendations