Microchimica Acta

, Volume 180, Issue 11–12, pp 935–956 | Cite as

Carbon nanomaterial based electrochemical sensors for biogenic amines

  • Xiao Yang
  • Bo Feng
  • Xiulan He
  • Fangping Li
  • Yonglan Ding
  • Junjie FeiEmail author
Review Article


This review describes recent advances in the use of carbon nanomaterials for electroanalytical detection of biogenic amines (BAs). It starts with a short introduction into carbon nanomaterials such as carbon nanotubes, graphene, nanodiamonds, carbon nanofibers, fullerenes, and their composites. Next, electrochemical sensing schemes are discussed for various BAs including dopamine, serotonin, epinephrine, norepinephrine, tyramine, histamine and putrescine. Examples are then given for methods for simultaneous detection of various BAs. Finally, we discuss the current and future challenges of carbon nanomaterial-based electrochemical sensors for BAs. The review contains 175 references.


This article reviews recent advances in the use of carbon nanomaterials (CNs) for the electroanalytical measurements of biogenic amines.


Biogenic amines Carbon nanomaterials Electrochemical sensors Review 



This work was supported by the National Natural Science Foundation of China (21275123, 20975088, 21105085, 31270988), Project of Hunan Provincial Natural Science Foundation of China (12JJ7002), Hunan Provincial Innovation Foundation For Postgraduate (CX2012B268), and Opening Fund of Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Hunan Normal University), Ministry of Education (KLCBTCMR2011-6).


  1. 1.
    Ascar A, Treptow H (1986) Biogene amine in lebensmitteln. Ulmer, StuttgartGoogle Scholar
  2. 2.
    Silla Santos MH (1996) Biogenic amines: their importance in foods. Int J Food Microbiol 29:213–231CrossRefGoogle Scholar
  3. 3.
    Halasz A, Barath A, Simon-Sarkadi L, Holzapfel W (1994) Biogenic-amines and their production by microorganisms in food. Trends Food Sci Technol 5:42–49CrossRefGoogle Scholar
  4. 4.
    Shalaby AR (1996) Significance of biogenic amines to food safety and human health. Food Res Int 29:675–690CrossRefGoogle Scholar
  5. 5.
    Suzzi G, Gardini F (2003) Biogenic amines in dry fermented sausages: a review. Int J Food Microbiol 88:41–54CrossRefGoogle Scholar
  6. 6.
    Karovicova J, Kohajdova Z (2005) Biogenic amines in food. Chem Pap 59:70–79Google Scholar
  7. 7.
    Önal A (2007) A review: current analytical methods for the determination of biogenic amines in foods. Food Chem 103:1475–1486CrossRefGoogle Scholar
  8. 8.
    Lapa-Guimarães J, Pickova J (2004) New solvent systems for thin-layer chromatographic determination of nine biogenic amines in fish and squid. J Chromatogr A 1045:223–232CrossRefGoogle Scholar
  9. 9.
    Emilia GM, Carrascosa AV, Rosario M (2005) A rapid and inexpensive method for the determination of biogenic amines from bacterial cultures by thin-layer chromatography. J Food Protect 68:625–629Google Scholar
  10. 10.
    Awan MA, Fleet I, Thomas CLP (2008) Determination of biogenic diamines with a vaporisation derivatization approach using solid-phase microextraction gas chromatography–mass spectrometry. Food Chem 111:462–468CrossRefGoogle Scholar
  11. 11.
    Almeida C, Fernandes JO, Cunha SC (2012) A novel dispersive liquid–liquid microextraction gas chromatography–mass spectrometry method for the determination of eighteen biogenic amines in beer. Food Control 11:462–468Google Scholar
  12. 12.
    Self RL, Wu WH, Marks HS (2011) Simultaneous quantification of eight biogenic amine compounds in tuna by matrix solid-phase dispersion followed by HPLC–orbitrap mass spectrometry. J Agric Food Chem 59:5906–5913CrossRefGoogle Scholar
  13. 13.
    Jung MC, Shi GY, Borland L, Michael AC, Weber SG (2006) Simultaneous determination of biogenic monoamines in rat brain dialysates using capillary high-performance liquid chromatography with photoluminescence following electron transfer. Anal Chem 78:1755–1760CrossRefGoogle Scholar
  14. 14.
    Cinquina AL, Cali A, Longo F, Santis LD, Severoni A, Abballe F (2004) Determination of biogenic amines in fish tissues by ion-exchange chromatography with conductivity detection. J Chromatogr A 1032:73–77CrossRefGoogle Scholar
  15. 15.
    Borba BMD, Rohrer JS (2007) Determination of biogenic amines in alcoholic beverages by ion chromatography with suppressed conductivity detection and integrated pulsed amperometric detection. J Chromatogr A 1155:22–30CrossRefGoogle Scholar
  16. 16.
    García-Villar N, Saurina J, Hernández-Cassou S (2006) Capillary electrophoresis determination of biogenic amines by field-amplified sample stacking and in-capillary derivatization. Electrophoresis 27:474–483CrossRefGoogle Scholar
  17. 17.
    Steiner MS, Meier RJ, Spangler C, Duerkop A, Wolfbeis OS (2009) Determination of biogenic amines by capillary electrophoresis using a chameleon type of fluorescent stain. Microchim Acta 67:259–266Google Scholar
  18. 18.
    He L, Toh CS (2006) Recent advances in analytical chemistry - a material approach. Anal Chim Acta 556:1–15CrossRefGoogle Scholar
  19. 19.
    Tretyakov YD, Goodilin EA (2009) Key trends in basic and application-oriented research on nanomaterials. Russ Chem Rev 78:801–820CrossRefGoogle Scholar
  20. 20.
    Sudhir PR, Wu HF, Zhou ZC (2005) Identification of peptides using gold nanoparticle-assisted single-drop microextraction coupled with AP-MALDI mass spectrometry. Anal Chem 77:7380–7385CrossRefGoogle Scholar
  21. 21.
    Cai YQ, Cai YE, Mou SF, Lu YQ (2005) Multi-walled carbon nanotubes as a solid-phase extraction adsorbent for the determination of chlorophenols in environmental water samples. J Chromatogr A 1081:245–247CrossRefGoogle Scholar
  22. 22.
    Gomes D, Nunes SP, Peinemann KV (2005) Membranes for gas separation based on poly(1-trimethylsilyl-1-propyne)–silica nanocomposites. J Membr Sci 246:13–25CrossRefGoogle Scholar
  23. 23.
    Manzoori JL, Amjadi M, Darvishnejad M (2012) Separation and preconcentration of trace quantities of copper ion using modified alumina nanoparticles, and its determination by flame atomic absorption spectrometry. Microchim Acta 176:437–443CrossRefGoogle Scholar
  24. 24.
    Song MJ, Hwang SW, Whang D (2010) Non-enzymatic electrochemical CuO nanoflowers sensor for hydrogen peroxide detection. Talanta 80:1648–1652CrossRefGoogle Scholar
  25. 25.
    Zhang JJ, Gu MM, Zheng TT, Zhu JJ (2009) Synthesis of gelatin-stabilized gold nanoparticles and assembly of carboxylic single-walled carbon nanotubes/Au composites for cytosensing and drug uptake. Anal Chem 81:6641–6648CrossRefGoogle Scholar
  26. 26.
    Zhang WD, Chen J, Jiang LC, Yu YX, Zhang JQ (2010) A highly sensitive nonenzymatic glucose sensor based on NiO-modified multi-walled carbon nanotubes. Microchim Acta 168:259–265CrossRefGoogle Scholar
  27. 27.
    Liu H, Webster TJ (2007) Nanomedicine for implants: a review of studies and necessary experimental tools. Biomaterials 28:354–369CrossRefGoogle Scholar
  28. 28.
    Willner I, Willner B (2010) Biomolecule-based nanomaterials and nanostructures. Nano Lett 10:3805–3815CrossRefGoogle Scholar
  29. 29.
    Perez S, Farre ML, Barcelo D (2009) Analysis, behavior and ecotoxicity of carbon-based nanomaterials in the aquatic environment. TrAC Trends Anal Chem 28:820–832CrossRefGoogle Scholar
  30. 30.
    Agüí L, Yáñez-Sedeño P, Pingarrón JM (2008) Role of carbon nanotubes in electroanalytical chemistry a review. Anal Chim Acta 622:11–47CrossRefGoogle Scholar
  31. 31.
    Kaur A, Gupta U (2009) A review on applications of nanoparticles for the preconcentration of environmental pollutants. J Mater Chem 19:8279–8289CrossRefGoogle Scholar
  32. 32.
    Pradeep T, Anshup (2009) Noble metal nanoparticles for water purification: a critical review. Thin Solid Films 517:6441–6478CrossRefGoogle Scholar
  33. 33.
    Campbell FW, Compton RG (2010) The use of nanoparticles in electroanalysis: an updated review. Anal Bioanal Chem 396:241–259CrossRefGoogle Scholar
  34. 34.
    Scida K, Stege PW, Haby G, Messina GA, García CD (2011) Recent applications of carbon-based nanomaterials in analytical chemistry: critical review. Anal Chim Acta 691:6–17CrossRefGoogle Scholar
  35. 35.
    Dai LM, Chang DW, Baek JB, Lu W (2012) Carbon nanomaterials: carbon nanomaterials for advanced energy conversion and storage. Small 8:1122CrossRefGoogle Scholar
  36. 36.
    Mauter MS, Elimelech M (2008) Environmental applications of carbon-based nanomaterials. Environ Sci Technol 42(5):5843–5859CrossRefGoogle Scholar
  37. 37.
    Wang XN, Hu PA (2012) Carbon nanomaterials: controlled growth and field-effect transistor biosensors. Front Mater Sci 6:26–46CrossRefGoogle Scholar
  38. 38.
    Kuchibhatla SVNT, Karakoti AS, Bera D, Seal S (2007) One dimension nanostructured materials. Prog Mater Sci 52:699–913CrossRefGoogle Scholar
  39. 39.
    Yu DS, Nagelli E, Du F, Dai LM (2010) Metal-free carbon nanomaterials become more active than metal catalysts and last longer. J Phys Chem Lett 1:2165–2173CrossRefGoogle Scholar
  40. 40.
    Sherigara BS, Kutner W, D’Souza F (2003) Electrocatalytic Properties and sensor applications of fullerenes and carbon nanotubes. Electroanalysis 15:753–772CrossRefGoogle Scholar
  41. 41.
    Pavlidis IV, Vorhaben T, Stamatis H (2012) Development of effective nanobiocatalytic systems through the immobilization of hydrolases on functionalized carbon-based nanomaterials. Biotechnol Tech 115:164–171Google Scholar
  42. 42.
    Zhang RY, Olin H (2012) Carbon nanomaterials as drug carriers: real time drug release investigation. Mater Sci Eng C 32:1247–1252CrossRefGoogle Scholar
  43. 43.
    Ajayan PM (1999) Nanotubes from carbon. Chem Rev 99:1787–1800CrossRefGoogle Scholar
  44. 44.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRefGoogle Scholar
  45. 45.
    Dresselhaus MS, Dresselhaus G, Jorio A (2004) Unusual properties and structure of carbon nanotubes. Annu Rev Mater Res 34:247–278CrossRefGoogle Scholar
  46. 46.
    Thostenson ET, Ren ZF, Chou TW (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61:1899–1912CrossRefGoogle Scholar
  47. 47.
    Dai HJ (2002) Carbon nanotubes: synthesis, integration, and properties. Acc Chem Res 35:1035–1044CrossRefGoogle Scholar
  48. 48.
    Banks CE, Moore RR, Davies TJ, Compton RG (2004) Investigation of modified basal plane pyrolytic graphite electrodes: definitive evidence for the electrocatalytic properties of the ends of carbon nanotubes. Chem Commun 10:1804–1805CrossRefGoogle Scholar
  49. 49.
    Banks CE, Davies TJ, Wildgoose GG, Compton RG (2005) Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites. Chem Commun 7:829–841CrossRefGoogle Scholar
  50. 50.
    Banks CE, Crossley A, Salter C, Wilkins SJ, Compton RG (2006) Carbon nanotubes contain metal impurities which are responsible for the “electrocatalysis” seen at some nanotube-modified electrodes. Angew Chem Int Ed 45:2533–2537CrossRefGoogle Scholar
  51. 51.
    Batchelor-McAuley C, Wildgoose GG, Compton RG, Shao LD, Green MLH (2008) Copper oxide nanoparticle impurities are responsible for the electroanalytical detection of glucose seen using multiwalled carbon nanotubes. Sensors Actuators B 132:356–360CrossRefGoogle Scholar
  52. 52.
    Pumera M, Iwai H (2009) Metallic impurities within residual catalyst metallic nanoparticles are in some cases responsible for “electrocatalytic” effect of carbon nanotubes. Chem Asian J 4:554–560CrossRefGoogle Scholar
  53. 53.
    Jacobs CB, Peairs MJ, Venton BJ (2010) Review: carbon nanotube based electrochemical sensors for biomolecules. Anal Chim Acta 662:105–127CrossRefGoogle Scholar
  54. 54.
    Vashist SK, Zheng D, Al-Rubeaan K, Luong JHT, Sheu FS (2011) Advances in carbon nanotube based electrochemical sensors for bioanalytical applications. Biotechnol Adv 29:169–188CrossRefGoogle Scholar
  55. 55.
    Gooding JJ (2005) Nanostructuring electrodes with carbon nanotubes: a review on electrochemistry and applications for sensing. Electrochim Acta 50:3049–3060CrossRefGoogle Scholar
  56. 56.
    Li CY, Thostenson ET, Chou TW (2008) Sensors and actuators based on carbon nanotubes and their composites: a review. Compos Sci Technol 68:1227–1249CrossRefGoogle Scholar
  57. 57.
    Wildgoose GG, Banks CE, Leventis HC, Compton RG (2006) Chemically modified carbon nanotubes for use in electroanalysis. Microchim Acta 152:187–214CrossRefGoogle Scholar
  58. 58.
    Zhao YL, Stoddart JF (2009) Noncovalent functionalization of single-walled carbon nanotubes. Acc Chem Res 42:1161–1171CrossRefGoogle Scholar
  59. 59.
    Wang J, Lin YH (2008) Functionalized carbon nanotubes and nanofibers for biosensing applications. TrAC Trends Anal Chem 27:619–626CrossRefGoogle Scholar
  60. 60.
    Brumfiel G (2009) Graphene gets ready for the big time. Nature 458:390–391CrossRefGoogle Scholar
  61. 61.
    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191CrossRefGoogle Scholar
  62. 62.
    Shao YY, Wang J, Wu H, Liu J, Aksay IA, Lin YH (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22:1027–1036CrossRefGoogle Scholar
  63. 63.
    Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534CrossRefGoogle Scholar
  64. 64.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRefGoogle Scholar
  65. 65.
    Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRefGoogle Scholar
  66. 66.
    Berger C, Song ZM, Li TB, Li XB, Ogbazghi AY, Feng R, Dai ZT (2004) Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem B 108:19912–19916CrossRefGoogle Scholar
  67. 67.
    Hass J, De Heer WA, Conrad EH (2008) The growth and morphology of epitaxial multilayer graphene. J Phys Condens Matter 20:1–27CrossRefGoogle Scholar
  68. 68.
    Pumera M, Ambrosi A, Bonanni A, Chng ELK, Poh HL (2010) Graphene for electrochemical sensing and biosensing. TrAC Trends Anal Chem 29:954–965CrossRefGoogle Scholar
  69. 69.
    Chen D, Tang LH, Li JH (2010) Graphene-based materials in electrochemistry. Chem Soc Rev 39:3157–3180CrossRefGoogle Scholar
  70. 70.
    Pumera M (2010) Graphene-based nanomaterials and their electrochemistry. Chem Soc Rev 39:4146–4157CrossRefGoogle Scholar
  71. 71.
    Brownson DAC, Banks CE (2010) Graphene electrochemistry: an overview of potential applications. Analyst 135:2768–2778CrossRefGoogle Scholar
  72. 72.
    Shan CS, Yang HF, Song JF, Han DX, Ivaska A, Niu L (2009) Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal Chem 81:2378–2382CrossRefGoogle Scholar
  73. 73.
    Liu KP, Zhang JJ, Yang JH, Wang CM, Zhu JJ (2010) Direct electrochemistry and electrocatalysis of hemoglobin based on poly(diallyldimethylammonium chloride) functionalized graphene sheets/room temperature ionic liquid composite film. Electrochem Commun 12:402–405CrossRefGoogle Scholar
  74. 74.
    Zhou KF, Zhu YH, Yang XL, Luo J, Li CZ, Luan SR (2010) A novel hydrogen peroxide biosensor based on Au–graphene–HRP–chitosan biocomposites. Electrochim Acta 55:3055–3060CrossRefGoogle Scholar
  75. 75.
    Wang YL, Peng W, Liu L, Tang M, Gao F, Li MJ (2011) Enhanced conductivity of a glassy carbon electrode modified with a graphene-doped film of layered double hydroxides for selectively sensing of dopamine. Microchim Acta 174:41–46CrossRefGoogle Scholar
  76. 76.
    Li J, Guo SJ, Zhai YM, Wang E (2009) Nafion–graphene nanocomposite film as enhanced sensing platform for ultrasensitive determination of cadmium. Electrochem Commun 11:1085–1088CrossRefGoogle Scholar
  77. 77.
    Li J, Guo SJ, Zhai YM, Wang E (2009) High-sensitivity determination of lead and cadmium based on the Nafion-graphene composite film. Anal Chim Acta 649:196–201CrossRefGoogle Scholar
  78. 78.
    Shang NG, Papakonstantinou P, McMullan M, Chu M, Stamboulis A, Potenza A, Dhesi SS, Marchetto H (2008) Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes. Adv Funct Mater 18:3506–3514CrossRefGoogle Scholar
  79. 79.
    Lang AE, Lozano AM (1998) Parkinson’s disease. N Engl J Med 339:1044–1053CrossRefGoogle Scholar
  80. 80.
    Nikolaus S, Antke C, Müller HW (2009) In vivo imaging of synaptic function in the central nervous system: II. Mental and affective disorders. Behav Brain Res 204:32–66CrossRefGoogle Scholar
  81. 81.
    Sun YX, Fei JJ, Hou J, Zhang Q, Liu YL, Hu BA (2009) Simultaneous determination of dopamine and serotonin using a carbon nanotubes-ionic liquid gel modified glassy carbon electrode. Microchim Acta 165:373–379CrossRefGoogle Scholar
  82. 82.
    Wong DL (2006) Epinephrine biosynthesis: hormonal and neural control during stress. Cell Mol Neurobiol 26:891–900CrossRefGoogle Scholar
  83. 83.
    Goyal RN, Bishnoi S (2011) A novel multi-walled carbon nanotube modified sensor for the selective determination of epinephrine in smokers. Electrochim Acta 56:2717–2724CrossRefGoogle Scholar
  84. 84.
    Goyal RN, Bishnoi S (2011) Simultaneous determination of epinephrine and norepinephrine in human blood plasma and urine samples using nanotubes modified edge plane pyrolytic graphite electrode. Talanta 84:78–83CrossRefGoogle Scholar
  85. 85.
    Beitollahi H, Karimi-Maleh H, Khabazzadeh H (2008) Nanomolar and selective determination of epinephrine in the presence of norepinephrine using CPE modified with carbon nanotubes and novel 2-(4-Oxo-3-phenyl-3,4-dihydro-quinazolinyl)- N-phenyl-hydrazinecarbothio-amide. Anal Chem 80:9848–9851CrossRefGoogle Scholar
  86. 86.
    Raina S, Kang WP, Davidson JL (2010) Fabrication of nitrogen-incorporated nanodiamond ultra-microelectrode array for dopamine detection. Diamond Relat Mater 19:256–259CrossRefGoogle Scholar
  87. 87.
    Breczko J, Plonska-Brzezinska ME, Echegoyen L (2012) Electrochemical oxidation and determination of dopamine in the presence of uricand ascorbic acids using a carbon nano-onion and poly (diallyldimethylammonium chloride) composite. Electrochim Acta 72:61–67CrossRefGoogle Scholar
  88. 88.
    Goyal RN, Gupta VK, Bachheti N, Sharma RA (2008) Electrochemical sensor for the determination of dopamine in presence of high concentration of ascorbic acid using a fullerene-C coated gold electrode. Electroanalysis 20:757–764CrossRefGoogle Scholar
  89. 89.
    Li J, Koehne JE, Cassell AM, Chen H, Ng HT, Ye Q, Fan W, Han J, Meyyappan M (2005) Inlaid multi-walled carbon nanotube nanoelectrode arrays for electroanalysis. Electroanalysis 17:15–27CrossRefGoogle Scholar
  90. 90.
    Ates M, Castillo J, Sarac AS, Schuhmann W (2008) Carbon fiber microelectrodes electrocoated with polycarbazol and poly (carbazole-co-p-tolylsulfonyl pyrrole) films for the detection of dopamine in presence of ascorbic acid. Microchim Acta 160:247–251CrossRefGoogle Scholar
  91. 91.
    Njagi J, Chernov MM, Leiter JC, Andreescu S (2010) Amperometric detection of dopamine in vivo with an enzyme based carbon fiber microbiosensor. Anal Chem 82:989–996CrossRefGoogle Scholar
  92. 92.
    Koehne JE, Marsh M, Boakye A, Douglas B et al (2011) Carbon nanofiber electrode array for electrochemical detection of dopamine using fast scan cyclic voltammetry. Analyst 136:1802–1805CrossRefGoogle Scholar
  93. 93.
    Britto PJ, Santhanam KSV, Ajayan PM (1996) Carbon nanotube electrode for oxidation of dopamine. Bioelectrochem Bioenerg 41:121–125CrossRefGoogle Scholar
  94. 94.
    Zhao Y, Gao Y, Zhan DP, Liu H, Zhao Q, Kou Y, Shao YH, Li MX, Zhuang QK, Zhu ZW (2005) Selective detection of dopamine in the presence of ascorbic acid and uric acid by a carbon nanotubes-ionic liquid gel modified electrode. Talanta 66:51–57CrossRefGoogle Scholar
  95. 95.
    Shahrokhian S, Zare-Mehrjardi HR (2007) Application of thionine-nafion supported on multi-walled carbon nanotube for preparation of a modified electrode in simultaneous voltammetric detection of dopamine and ascorbic acid. Electrochim Acta 52:6310–6317CrossRefGoogle Scholar
  96. 96.
    Mazloum-Ardakani M, Beitollahi H, Ganjipour G, Naeimi H, Nejati M (2009) Electrochemical and catalytic investigations of dopamine and uric acid by modified carbon nanotube paste electrode. Bioelectrochemistry 75:1–8CrossRefGoogle Scholar
  97. 97.
    Sathisha TV, Kumara Swamy BE, Chandrashekar BN, Thomas N, Eswarappa B (2012) Selective determination of dopamine in presence of ascorbic acid and uric acid at hydroxy double salt/surfactant film modified carbon paste electrode. J Appl Electrochem 674:57–64Google Scholar
  98. 98.
    Zhang MN, Gong KP, Zhang HG, Mao LQ (2005) Layer-by-layer assembled carbon nanotubes for selective determination of dopamine in the presence of ascorbic acid. Biosens Bioelectron 20:1270–1276CrossRefGoogle Scholar
  99. 99.
    Zhang YZ, Pan Y, Su S, Zhang LP, Li SP, Shao MW (2007) A novel functionalized single-wall carbon nanotube modified electrode and its application in determination of dopamine and uric acid in the presence of high concentrations of ascorbic acid. Electroanalysis 19:1695–1701CrossRefGoogle Scholar
  100. 100.
    Manjunatha R, Suresh GS, Melo JS (2010) Simultaneous determination of ascorbic acid, dopamine and uric acid using polystyrene sulfonate wrapped multiwalled carbon nanotubes bound to graphite electrode through layer-by-layer technique. Sensors Actuators B 145:643–650CrossRefGoogle Scholar
  101. 101.
    Zheng D, Ye JS, Zhang WD (2008) Some properties of sodium dodecyl sulfate functionalized multiwalled carbon nanotubes electrode and its application on detection of dopamine in the presence of ascorbic acid. Electroanalysis 20:1811–1818CrossRefGoogle Scholar
  102. 102.
    Dumitrescu I, Edgeworth JP, Unwin PR, Macpherson JV (2009) Ultrathin carbon nanotube mat electrodes for enhanced amperometric detection. Adv Mater 21:3105–3109CrossRefGoogle Scholar
  103. 103.
    Yin TJ, Wei WZ, Zeng JX (2006) Selective detection of dopamine in the presence of ascorbic acid by use of glassy-carbon electrodes modified with both polyaniline film and multi-walled carbon nanotubes with incorporated β-cyclodextrin. Anal Bioanal Chem 386:2087–2094CrossRefGoogle Scholar
  104. 104.
    Tu XM, Xie QJ, Jiang SY, Yao SZ (2007) Electrochemical quartz crystal impedance study on the overoxidation of polypyrrole–carbon nanotubes composite film for amperometric detection of dopamine. Biosens Bioelectron 22:2819–2826CrossRefGoogle Scholar
  105. 105.
    Lin L, Cai YP, Lin RP, Yu L, Song CY, Gao HC, Li XK (2011) New integrated in vivo microdialysis-electrochemical device for determination of the neurotransmitter dopamine in rat striatum of freely moving rats. Microchim Acta 172:217–223CrossRefGoogle Scholar
  106. 106.
    Liu AH, Honma I, Zhou HS (2007) Simultaneous voltammetric detection of dopamine and uric acid at their physiological level in the presence of ascorbic acid using poly(acrylic acid) -multiwalled carbon-nanotube composite-covered glassy-carbon electrode. Biosens Bioelectron 23:74–80CrossRefGoogle Scholar
  107. 107.
    Kumar SA, Wang SF, Yang TC-K, Yeh CT (2010) Acid yellow 9 as a dispersing agent for carbon nanotubes: preparation of redox polymer–carbon nanotube composite film and its sensing application towards ascorbic acid and dopamine. Biosens Bioelectron 25:2592–2597CrossRefGoogle Scholar
  108. 108.
    Zhang L, Shi ZG, Lang QH (2011) Fabrication of poly(orthanilic acid)–multiwalled carbon nanotubes composite film-modified glassy carbon electrode and its use for the simultaneous determination of uric acid and dopamine in the presence of ascorbic acid. J Solid State Electrochem 15:801–809CrossRefGoogle Scholar
  109. 109.
    Liu XG, Peng YH, Qu XJ, Ai SY, Han RX, Zhu XB (2011) Multi-walled carbon nanotube-chitosan/poly(amidoamine)/DNA nanocomposite modified gold electrode for determination of dopamine and uric acid under coexistence of ascorbic acid. J Electroanal Chem 654:72–78CrossRefGoogle Scholar
  110. 110.
    Zhang YZ, Cai YJ, Su S (2006) Determination of dopamine in the presence of ascorbic acid by poly(styrene sulfonic acid) sodium salt/single-wall carbon nanotube film modified glassy carbon electrode. Anal Biochem 350:285–291CrossRefGoogle Scholar
  111. 111.
    Wang HS, Li TH, Jia WL, Xu HY (2006) Highly selective and sensitive determination of dopamine using a Nafion/carbon nanotubes coated poly(3-methylthiophene) modified electrode. Biosens Bioelectron 22:664–669CrossRefGoogle Scholar
  112. 112.
    Kan XW, Zhao Y, Geng ZR, Wang ZL, Zhu JJ (2008) Composites of multiwalled carbon nanotubes and molecularly imprinted polymers for dopamine recognition. J Phys Chem C 112:4849–4854CrossRefGoogle Scholar
  113. 113.
    Moreno M, Arribasa AS, Bermejo E, Chicharro M (2010) Selective detection of dopamine in the presence of ascorbic acid using carbon nanotube modified screen-printed electrodes. Talanta 80:2149–2156CrossRefGoogle Scholar
  114. 114.
    Dursun Z, Gelmez B (2010) Simultaneous determination of ascorbic acid, dopamine and uric acid at Pt nanoparticles decorated multiwall carbon nanotubes modified GCE. Electroanalysis 22:1106–1114CrossRefGoogle Scholar
  115. 115.
    Adekunle AS, Agboola BO, Kenneth JP, Ozoemena KI (2010) Electrocatalytic detection of dopamine at single-walled carbon nanotubes–iron (III) oxide nanoparticles platform. Sensors Actuators B 148:93–102CrossRefGoogle Scholar
  116. 116.
    Jia D, Dai JY, Yuan HY, Lei L, Xiao D (2011) Selective detection of dopamine in the presence of uric acid using a gold nanoparticles-poly(luminol) hybrid film and multi-walled carbon nanotubes with incorporated β-cyclodextrin modified glassy carbon electrode. Talanta 85:2344–2351CrossRefGoogle Scholar
  117. 117.
    Zhang Y, Yuan R, Chai YQ, Zhong X, Zhong HA (2012) Carbon nanotubes incorporated with sol–gel derived La(OH)3 nanorods as platform to simultaneously determine ascorbic acid, dopamine, uric acid and nitrite. Colloids Surf B 100:185–189CrossRefGoogle Scholar
  118. 118.
    Lin M, Huang H, Liu Y, Liang CJ, Fei SD, Chen XF, Ni CL (2013) High loading of uniformly dispersed Pt nanoparticles on polydopamine coated carbon nanotubes and its application in simultaneous determination of dopamine and uric acid. Nanotechnology 24:065501CrossRefGoogle Scholar
  119. 119.
    Yang QH, Xu WH, Tomita A, Kyotani T (2005) The template synthesis of double coaxial carbon nanotubes with nitrogen-doped and boron-doped multiwalls. J Am Chem Soc 127:8956–8957CrossRefGoogle Scholar
  120. 120.
    Yang LJ, Jiang SJ, Zhao Y, Zhu L, Chen S, Wang XZ, Wu Q, Ma J, Ma YW, Hu Z (2011) Boron-doped carbon nanotubes as Metal-free electrocatalysts for the oxygen reduction reaction. Angew Chem Int Ed 123:7270–7273CrossRefGoogle Scholar
  121. 121.
    Deng CY, Chen JH, Wang MD, Xiao CH, Nie Z, Yao SZ (2009) A novel and simple strategy for selective and sensitive determination of dopamine based on the boron-doped carbon nanotubes modified electrode. Biosens Bioelectron 24:2091–2094CrossRefGoogle Scholar
  122. 122.
    Wu W, Zhu HR, Fan LZ, Liu DF, Renneberg R, Yang SH (2007) Sensitive dopamine recognition by boronic acid functionalized multi-walled carbon nanotubes. Chem Commun 23:2345–2347Google Scholar
  123. 123.
    Ali SR, Ma YF, Parajuli RR, Balogun Y, Lai WY-C, He HX (2007) A nonoxidative sensor based on a self-doped polyaniline/carbon nanotube composite for sensitive and selective detection of the neurotransmitter dopamine. Anal Chem 79:2583–2587CrossRefGoogle Scholar
  124. 124.
    Wang Y, Li YM, Tang LH, Lu J, Li JH (2009) Application of graphene-modified electrode for selective detection of dopamine. Electrochem Commun 11:889–892CrossRefGoogle Scholar
  125. 125.
    Tan L, Zhou KG, Zhang YH, Wang HX, Wang XD, Guo YF, Zhang HL (2010) Nanomolar detection of dopamine in the presence of ascorbic acid at β-cyclodextrin/graphene nanocomposite platform. Electrochem Commun 12:557–560CrossRefGoogle Scholar
  126. 126.
    Kim YR, Bong S, Kang YJ, Yang Y, Mahajan RK, Kim JS, Kim H (2010) Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes. Biosens Bioelectron 25:2366–2369CrossRefGoogle Scholar
  127. 127.
    Liu Q, Zhu X, Huo ZH, He XL, Liang Y, Xu MT (2012) Electrochemical detection of dopamine in the presence of ascorbic acid using PVP/graphene modified electrodes. Talanta 97:557–562CrossRefGoogle Scholar
  128. 128.
    Han DX, Han TT, Shan CS, Ivaska A, Niu L (2010) Simultaneous determination of ascorbic acid, dopamine and uric acid with chitosan-graphene modified electrode. Electroanalysis 22:2001–2008CrossRefGoogle Scholar
  129. 129.
    Hou SF, Kasner ML, Su SJ, Patel K, Cuellari R (2010) Highly sensitive and selective dopamine biosensor fabricated with silanized graphene. J Phys Chem C 114:14915–14921CrossRefGoogle Scholar
  130. 130.
    Sheng ZH, Zheng XQ, Xu JY, Bao WJ, Wang FB, Xia XH (2012) Electrochemical sensor based on nitrogen doped graphene: simultaneous determination of ascorbic acid, dopamine and uric acid. Biosens Bioelectron 34:125–131CrossRefGoogle Scholar
  131. 131.
    Wu L, Feng LY, Ren JS, Qu XG (2012) Electrochemical detection of dopamine using porphyrin-functionalized graphene. Biosens Bioelectron 34:57–62CrossRefGoogle Scholar
  132. 132.
    Li FH, Chai J, Yang HF, Han DX, Niu L (2010) Synthesis of Pt/ionic liquid/graphene nanocomposite and its simultaneous determination of ascorbic acid and dopamine. Talanta 81:1063–1068CrossRefGoogle Scholar
  133. 133.
    Zhang FY, Li YJ, Gu YE, Wang ZH, Wang CM (2011) One-pot solvothermal synthesis of a Cu2O/Graphene nanocomposite and its application in an electrochemical sensor for dopamine. Microchim Acta 173:103–109CrossRefGoogle Scholar
  134. 134.
    Liu S, Yan J, He GW, Zhong DD, Chen JX, Shi LY, Zhou XM, Jiang HJ (2012) Layer-by-layer assembled multilayer films of reduced graphene oxide/gold nanoparticles for the electrochemical detection of dopamine. J Electroanal Chem 672:40–44CrossRefGoogle Scholar
  135. 135.
    Li SJ, Deng DH, Shi Q, Liu SR (2012) Electrochemical synthesis of a graphene sheet and gold nanoparticle-based nanocomposite, and its application to amperometric sensing of dopamine. Microchim Acta 177:325–331CrossRefGoogle Scholar
  136. 136.
    Mao Y, Bao Y, Gan SY, Li FH, Niu L (2011) Electrochemical sensor for dopamine based on a novel graphene-molecular imprinted polymers composite recognition element. Biosens Bioelectron 28:291–297CrossRefGoogle Scholar
  137. 137.
    Liu B, Lian HT, Yin JF, Sun XY (2012) Dopamine molecularly imprinted electrochemical sensor based on graphene–chitosan composite. Electrochim Acta 75:108–114CrossRefGoogle Scholar
  138. 138.
    Ping JF, Wu J, Wang YX, Ying YB (2012) Simultaneous determination of ascorbic acid, dopamine and uric acid using high-performance screen-printed graphene electrode. Biosens Bioelectron 34:70–76CrossRefGoogle Scholar
  139. 139.
    Liu S, Xing XR, Yu JH, Lian WJ, Jie L, Cui M, Huang JD (2012) A novel label-free electrochemical aptasensor based on graphene–polyaniline composite film for dopamine determination. Biosens Bioelectron 36:186–191CrossRefGoogle Scholar
  140. 140.
    Niu X, Yang W, Guo H, Ren J, Gao JZ (2013) Highly sensitive and selective dopamine biosensor based on 3, 4, 9, 10-perylene tetracarboxylic acid functionalized graphene sheets/multi-wall carbon nanotubes/ionic liquid composite film modified electrode. Biosens Bioelectron 41:225–231CrossRefGoogle Scholar
  141. 141.
    Fukushima T, Kosaka A, Ishimura Y, Yamamoto T, Takigawa T, Ishii N, Aida T (2003) Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes. Science 300:2072–2074CrossRefGoogle Scholar
  142. 142.
    Kim SK, Kim D, Jeon S (2012) Electrochemical determination of serotonin on glassy carbon electrode modified with various graphene nanomaterials. Sensors Actuators B 174:285–291CrossRefGoogle Scholar
  143. 143.
    Swamy BEK, Venton BJ (2007) Carbon nanotube-modified microelectrodes for simultaneous detection of dopamine and serotonin in vivo. Analyst 132:876–884CrossRefGoogle Scholar
  144. 144.
    Njagi J, Ball M, Best M, Wallace KN, Andreescu S (2010) Electrochemical quantification of serotonin in the live embryonic zebrafish intestine. Anal Chem 82:1822–1830CrossRefGoogle Scholar
  145. 145.
    Shahrokhiana S, Khafaji M (2010) Application of pyrolytic graphite modified with nano-diamond/graphite film for simultaneous voltammetric determination of epinephrine and uric acid in the presence of ascorbic acid. Electrochim Acta 55:9090–9096CrossRefGoogle Scholar
  146. 146.
    Yogeswaran U, Thiagarajan S, Chen SM (2007) Nanocomposite of functionalized multiwall carbon nanotubes with nafion, nano platinum, and nano gold biosensing film for imultaneous determination of ascorbic acid, epinephrine, and uric acid. Anal Biochem 365:122–131CrossRefGoogle Scholar
  147. 147.
    Valentini F, Palleschi G, Morales EL, Orlanducci S, Tamburri E, Terranova ML (2007) Functionalized single-walled carbon nanotubes modified microsensors for the selective response of epinephrine in presence of ascorbic acid. Electroanalysis 19:859–869CrossRefGoogle Scholar
  148. 148.
    Beitollahi H, Ardakani MM, Ganjipour B, Naeimi H (2008) Novel 2,2′-[1,2-ethanediylbis(nitriloethylidyne)]-bis-hydroquinone double-wall carbon nanotube paste electrode for simultaneous determination of epinephrine, uric acid and folic acid. Biosens Bioelectron 24:362–368CrossRefGoogle Scholar
  149. 149.
    Yi HC, Zheng DY, Hu CG, Hu SS (2008) Functionalized multiwalled carbon nanotubes through in situ electropolymerization of brilliant cresyl blue for determination of epinephrine. Electroanalysis 20:1143–1146CrossRefGoogle Scholar
  150. 150.
    Moraes FC, Golinelli DLC, Mascaro LH, Machado SAS (2010) Determination of epinephrine in urine using multi-walled carbon nanotube modified with cobalt phthalocyanine in a paraffin composite electrode. Sensors Actuators B 148:492–497CrossRefGoogle Scholar
  151. 151.
    Shahrokhian S, Saberi RS (2011) Electrochemical preparation of over-oxidized polypyrrole /multi-walled carbon nanotube composite on glassy carbon electrode and its application in epinephrine determination. Electrochim Acta 57:132–138CrossRefGoogle Scholar
  152. 152.
    Li X, Chen MF, Ma XY (2012) Selective determination of epinephrine in the presence of ascorbic acid using a glassy carbon electrode modified with graphene. Anal Sci 28:147CrossRefGoogle Scholar
  153. 153.
    Cui F, Zhang XL (2012) Electrochemical sensor for epinephrine based on a glassy carbon electrode modified with graphene/gold nanocomposites. J Electroanal Chem 669:35–41CrossRefGoogle Scholar
  154. 154.
    Li Y, Umasankar Y, Chen SM (2009) Multiwalled carbon nanotubes with poly(NDGAChi) biocomposite film for the electrocatalysis of epinephrine and norepinephrine. Anal Biochem 388:288–295CrossRefGoogle Scholar
  155. 155.
    Cooper SE, Venton BJ (2009) Fast-scan cyclic voltammetry for the detection of tyramine and octopamine. Anal Bioanal Chem 394:329–336CrossRefGoogle Scholar
  156. 156.
    Huang JD, Xing XR, Zhang XM, He XR, Lin Q, Lian WJ, Zhu H (2011) A molecularly imprinted electrochemical sensor based on multiwalled carbon nanotube-gold nanoparticle composites and chitosan for the detection of tyramine. Food Res Int 44:276–281CrossRefGoogle Scholar
  157. 157.
    Raoof JB, Ojani R, Amiri-Aref M, Baghayeri M (2012) Electrodeposition of quercetin at a multi-walled carbon nanotubes modified glassy carbon electrode as a novel and efficient voltammetric sensor for simultaneous determination of levodopa, uric acid and tyramine. Sensors Actuators B 166–167:508–518CrossRefGoogle Scholar
  158. 158.
    Yagodina OV, Nikolskaya EB (1997) The main factors of monoamine biosensor selectivity increasing. Sensors Actuators B 44:566–570CrossRefGoogle Scholar
  159. 159.
    Wimmerova M, Macholan L (1999) Sensitive amperometric biosensor for the determination of biogenic and synthetic amines using pea seedlings amine oxidase: a novel approach for enzyme immobilisation. Biosens Bioelectron 14:695–702CrossRefGoogle Scholar
  160. 160.
    Duong HD, Rhee J (2007) Preparation and characterization of sensing membranes for the detection of glucose, lactate and tyramine in microtiter plates. Talanta 72:1275–1282CrossRefGoogle Scholar
  161. 161.
    Lata S, Yadav S, Bhardwaj R, Pundir CS (2011) Amperometric determination of tyramine in sauce and beer by epoxy resin biocomposite membrane bound tyramine oxidase. Sens Instrumen Food Qual 5:104–110CrossRefGoogle Scholar
  162. 162.
    Švarc–Gajić JS, Stojanovic Z (2010) Electrocatalytic determination of histamine on a nickel-film glassy carbon electrode. Electroanalysis 22:2931–2939CrossRefGoogle Scholar
  163. 163.
    Akbari-adergani B, Norouzi P, Ganjali MR, Dinarvand R (2010) Ultrasensitive flow-injection electrochemical method for determination of histamine in tuna fish samples. Food Res Int 43:1116–1122CrossRefGoogle Scholar
  164. 164.
    Sarada BV, Rao TN, Tryk DA, Fujishima A (2000) Eectrochemical oxidation of histamine and serotonin at highly boron-doped diamond electrodes. Anal Chem 72:1632–1638CrossRefGoogle Scholar
  165. 165.
    Bao LL, Sun DP, Tachikawa H, Davidson VL (2002) Improved sensitivity of a histamine sensor using an engineered methylamine dehydrogenase. Anal Chem 74:1144–1148CrossRefGoogle Scholar
  166. 166.
    Keow CM, Bakar FA, Salleh AB, Heng LY, Wagiran R, Siddiquee S (2012) Screen-printed histamine biosensors fabricated from the entrapment of diamine oxidase in a photocured poly(HEMA) Film. Int J Electrochem Sci 7:4702–4715Google Scholar
  167. 167.
    Izquierdo-Pulido M, Hernandez-Jover T, Mariné-Font A, VidalCarou MC (1996) Biogenic amines in European beers. J Agric Food Chem 44:3159–3163CrossRefGoogle Scholar
  168. 168.
    Rochette JF, Sacher E, Meunier M, Luong JHT (2005) A mediatorless biosensor for putrescine using multiwalled carbon nanotubes. Anal Biochem 336:305–311CrossRefGoogle Scholar
  169. 169.
    Mureşan L, Valera RR, Frébort I, Popescu IC, Csöregi E, Nistor M (2008) Amine oxidase amperometric biosensor coupled to liquid chromatography for biogenic amines determination. Microchim Acta 163:219–225CrossRefGoogle Scholar
  170. 170.
    Shanmugam S, Thandavan K, Gandhi S, Sethuraman S, Rayappan JBB, Krishnan UM (2011) Development and evaluation of a highly sensitive rapid response enzymatic nanointerfaced biosensor for detection of putrescine. Analyst 136:5234–5240CrossRefGoogle Scholar
  171. 171.
    Carsol MA, Mascini M (1999) Diamine oxidase and putrescine oxidase immobilized reactors in flow injection analysis: a comparison in substrate specificity. Talanta 50:141–148CrossRefGoogle Scholar
  172. 172.
    Luong JHT, Hrapovic S, Wang DS (2005) Multiwall carbon nanotube (MWCNT) based electrochemical biosensors for mediatorless detection of putrescine. Electroanalysis 17:47–53CrossRefGoogle Scholar
  173. 173.
    Niculescu M, Ruzgas T, Nistor T, Frebort I, Sebela M, Pec P, Csoregi E (2000) Electrooxidation mechanism of biogenic amines at amine oxidase modified graphite electrode. Anal Chem 72:5988–5993CrossRefGoogle Scholar
  174. 174.
    Lange J, Wittmann C (2002) Enzyme sensor array for the determination of biogenic amines in food samples. Anal Bioanal Chem 372:276–283CrossRefGoogle Scholar
  175. 175.
    Carelli D, Centonze D, Palermo C, Quinto M, Rotunno T (2007) An interference free amperometric biosensor for the detection of biogenic amines in food products. Biosens Bioelectron 23:640–647CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Xiao Yang
    • 1
  • Bo Feng
    • 2
  • Xiulan He
    • 1
  • Fangping Li
    • 1
  • Yonglan Ding
    • 1
    • 3
  • Junjie Fei
    • 1
    Email author
  1. 1.Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of ChemistryXiangtan UniversityXiangtanPeople’s Republic of China
  2. 2.College of Chemical EngineeringXiangtan UniversityXiangtanPeople’s Republic of China
  3. 3.Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of EducationHunan Normal UniversityChangshaChina

Personalised recommendations