Advertisement

Microchimica Acta

, Volume 180, Issue 9–10, pp 829–835 | Cite as

Fluorescent assay for oxytetracycline based on a long-chain aptamer assembled onto reduced graphene oxide

  • Huimin Zhao
  • Sheng Gao
  • Meng Liu
  • Yangyang Chang
  • Xinfei Fan
  • Xie Quan
Original Paper

Abstract

We report on a fluorescent assay for oxytetracycline (OTC) using a fluorescein-labeled long-chain aptamer assembled onto reduced graphene oxide (rGO). The π-π stacking interaction between aptamer and rGO causes the fluorescence of the label to be almost completely quenched via energy transfer so that the system has very low background fluorescence. The addition of OTC leads to the formation of G-quadruplex OTC complexes and prevents the adsorption of labeled aptamer on the surface of rGO. As a result, fluorescence is restored, and this effect allows for a quantitative assay of OTC over the 0.1–2 μM concentration range and with a detection limit of 10 nM. This method is simple, rapid, selective and sensitive. It may be applied to other small molecule analytes by applying appropriate aptamers.

Figure

A simple and sensitive fluorescent assay for oxytetracycline detection based on the different interaction intensity of fluorescein-labeled long-chain aptamer, G-quadruplex-OTC complex with reduced graphene oxide was designed.

Keywords

Long-chain aptamer Oxytetracycline Fluorescent assay Graphene 

Notes

Acknowledgment

This work was financially supported by the National Natural Science Foundation of China (No. 21277016).

Supplementary material

604_2013_1006_MOESM1_ESM.doc (1.2 mb)
ESM 1 (DOC 1241 kb)

References

  1. 1.
    Heilig S, Lee P, Breslow L (2002) Curtailing antibiotic use in agriculture. West J Med 176:9–11. doi: 10.1136/ewjm.176.1.9 CrossRefGoogle Scholar
  2. 2.
    Gräslund S, Bengtsson BE (2001) Chemicals and biological products used in south-east Asian shrimp farming, and their potential impact on the environment — a review. Sci Total Environ 280:93–131. doi: 10.1016/S0048-9697(01)00818-X CrossRefGoogle Scholar
  3. 3.
    Himmelsbach M, Buchberger W (2005) Residue analysis of oxytetracycline in water and sediment samples by high-performance liquid chromatography and immunochemical techniques. Microchim Acta 151:67–72. doi: 10.1007/s00604-005-0372-1 CrossRefGoogle Scholar
  4. 4.
    Aga DS, Goldfish R, Kulshrestha P (2003) Application of ELISA in determining the fate of tetracyclines in land-applied livestock wastes. Analyst 128:658–662. doi: 10.1039/b301630g CrossRefGoogle Scholar
  5. 5.
    Li YT, Qu LL, Li DW, Song QX, Fathi F, Long YT (2013) Rapid and sensitive in-situ detection of polar antibiotics in water using a disposable Ag-graphene sensor based on electrophoretic preconcentration and surface-enhanced Raman spectroscopy. Biosens Bioelectron 43:94–100. doi: 10.1016/j.bios.2012.12.005 CrossRefGoogle Scholar
  6. 6.
    Kowalski P (2008) Capillary electrophoretic method for the simultaneous determination of tetracycline residues in fish samples. J Pharm Biomed Anal 47:487–493. doi: 10.1016/j.jpba.2008.01.036 CrossRefGoogle Scholar
  7. 7.
    Vega D, Agüí L, González-Cortés A, Yáñez-Sedeño P, Pingarrón JM (2007) Voltammetry and amperometric detection of tetracyclines at multi-wall carbon nanotube modified electrodes. Anal Bioanal Chem 389:951–958. doi: 10.1007/s00216-007-1505-7 CrossRefGoogle Scholar
  8. 8.
    Weber CC, Link N, Fux C, Zisch AH, Weber W, Fussenegger M (2005) Broad-spectrum protein biosensors for class-specific detection of antibiotics. Biotechnol Bioeng 89:9–17. doi: 10.1002/bit.20224 CrossRefGoogle Scholar
  9. 9.
    Famulok M, Mayer G, Blind M (2000) Nucleic acid aptamers from selection in vitro to applications in vivo. Acc Chem Res 33:591–599. doi: 10.1021/ar960167q CrossRefGoogle Scholar
  10. 10.
    Iliuk AB, Hu L, Tao WA (2011) Aptamer in bioanalytical applications. Anal Chem 83:4440–4452. doi: 10.1021/ac201057w CrossRefGoogle Scholar
  11. 11.
    Sefah K, Phillips JA, Xiong X, Meng L, Van Simaeys D, Chen H, Martin J, Tan W (2009) Nucleic acid aptamers for biosensors and bio-analytical applications. Analyst 134:1765–1775. doi: 10.1039/b905609m CrossRefGoogle Scholar
  12. 12.
    Niazi JH, Lee SJ, Kim YS, Gu MB (2008) ssDNA aptamers that selectively bind oxytetracycline. Bioorg Med Chem 16:1254–1261. doi: 10.1016/j.bmc.2007.10.073 CrossRefGoogle Scholar
  13. 13.
    Kim YS, Niazi JH, Gu MB (2009) Specific detection of oxytetracycline using DNA aptamer-immobilized interdigitated array electrode chip. Anal Chim Acta 634:250–254. doi: 10.1016/j.aca.2008.12.025 CrossRefGoogle Scholar
  14. 14.
    Zheng D, Zhu X, Zhu X, Bo B, Yin Y, Li G (2013) An electrochemical biosensor for the direct detection of oxytetracycline in mouse blood serum and urine. Analyst 138(6):1886–1890. doi: 10.1039/c3an36590e CrossRefGoogle Scholar
  15. 15.
    Kim YS, Kim JH, Kim IA, Lee SJ, Jurng J, Gu MB (2010) A novel colorimetric aptasensor using gold nanoparticle for a highly sensitive and specific detection of oxytetracycline. Biosens Bioelectron 26:1644–1649. doi: 10.1016/j.bios.2010.08.046 CrossRefGoogle Scholar
  16. 16.
    Kim YS, Kim JH, Kim IA, Lee SJ, Gu MB (2011) The affinity ratio—Its pivotal role in gold nanoparticle-based competitive colorimetric aptasensor. Biosens Bioelectron 26:4058–4063. doi: 10.1016/j.bios.2011.03.030 CrossRefGoogle Scholar
  17. 17.
    Kim K, Gu MB, Kang DH, Park JW, Song IH, Jung HS, Suh KY (2010) High-sensitivity detection of oxytetracycline using light scattering agglutination assay with aptasensor. Electrophoresis 31(18):3115–3120. doi: 10.1002/elps.201000217 CrossRefGoogle Scholar
  18. 18.
    Hou H, Bai X, Xing C, Gu N, Zhang B, Tang J (2013) Aptamer-based cantilever array sensors for oxytetracycline detection. Anal Chem 85(4):2010–2014. doi: 10.1021/ac3037574 CrossRefGoogle Scholar
  19. 19.
    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191. doi: 10.1038/nmat1849 CrossRefGoogle Scholar
  20. 20.
    Gan T, Hu S (2011) Electrochemical sensors based on graphene materials. Microchim Acta 175(1–2):1–19. doi: 10.1007/s00604-011-0639-7 Google Scholar
  21. 21.
    Swathi RS, Sebastian KL (2008) Resonance energy transfer from a dye molecule to graphene. J Chem Phys 129:054703–054709. doi: 10.1063/1.2956498 CrossRefGoogle Scholar
  22. 22.
    Swathi RS, Sebastian KL (2009) Long range resonance energy transfer from a dye molecule to graphene has (distance)−4 dependence. J Chem Phys 130:086101–086103. doi: 10.1063/1.3077292 CrossRefGoogle Scholar
  23. 23.
    Lu CH, Yang HH, Zhu CL, Chen X, Chen GN (2009) A Graphene platform for sensing biomolecules. Angew Chem Int Ed 48:4785–4787. doi: 10.1002/anie.200901479 CrossRefGoogle Scholar
  24. 24.
    Perez-Lopez B, Merkoci A (2012) Carbon nanotubes and graphene in analytical sciences. Microchim Acta 179:1–16. doi: 10.1007/s00604-012-0871-9 CrossRefGoogle Scholar
  25. 25.
    Morales-Narváez E, Merkoçi A (2012) Graphene oxide as an optical biosensing platform. Adv Mater 24:3298–3308. doi: 10.1002/adma.201200373 CrossRefGoogle Scholar
  26. 26.
    Chang H, Tang L, Wang Y, Jiang J, Li J (2010) Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection. Anal Chem 82:2341–2346. doi: 10.1021/ac9025384 CrossRefGoogle Scholar
  27. 27.
    He Y, Lin Y, Tang H, Pang D (2012) A graphene oxide-based fluorescent aptasensor for the turn-on detection of epithelial tumor marker mucin 1. Nanoscale 4:2054–2059. doi: 10.1039/c2nr12061e CrossRefGoogle Scholar
  28. 28.
    Liu C, Wang Z, Jia H, Li Z (2011) Efficient fluorescence resonance energy transfer between upconversion nanophosphors and graphene oxide: a highly sensitive biosensing platform. Chem Commun 47:4661–4663. doi: 10.1039/c1cc10597c CrossRefGoogle Scholar
  29. 29.
    Wu M, Kempaiah R, Huang PJ, Maheshwari V, Liu J (2011) Adsorption and desorption of DNA on graphene oxide studied by fluorescently labeled oligonucleotides. Langmuir 27:2731–2738. doi: 10.1021/la1037926 CrossRefGoogle Scholar
  30. 30.
    He S, Song B, Li D, Zhu C, Qi W, Wen Y, Wang L, Song S, Fang H, Fan C (2010) A Graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv Funct Mater 20:453–459. doi: 10.1002/adfm.200901639 CrossRefGoogle Scholar
  31. 31.
    Mehta J, Rouah-Martin E, Van Dorst B, Maes B, Herrebout W, Scippo ML, Dardenne F, Blust R, Robbens J (2012) Selection and characterization of PCB-binding DNA aptamers. Anal Chem 84:1669–1676. doi: 10.1021/ac202960b CrossRefGoogle Scholar
  32. 32.
    Jo M, Ahn JY, Lee J, Lee S, Hong SW, Yoo JW, Kang J, Dua P, Lee DK, Hong S, Kim S (2011) Development of single-stranded DNA aptamers for specific Bisphenol A detection. Oligonucleotides 21:85–91. doi: 10.1089/oli.2010.0267 CrossRefGoogle Scholar
  33. 33.
    Sun X, Liu Z, Welsher K, Robinson J, Goodwin A, Zaric S, Dai H (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1:203–212. doi: 10.1007/s12274-008-8021-8 CrossRefGoogle Scholar
  34. 34.
    Zhou Y, Bao Q, Tang LAL, Zhong Y, Loh KP (2009) Hydrothermal dehydration for the “green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem Mater 21:2950–2956. doi: 10.1021/cm9006603 CrossRefGoogle Scholar
  35. 35.
    Sen D, Gilbert W (1990) A sodium-potassium switch in the formation of four-stranded G4-DNA. Nature 344:410–414. doi: 10.1038/344410a0 CrossRefGoogle Scholar
  36. 36.
    Walmsley JA, Burnett JF (1999) A new model for the K+-induced macromolecular structure of guanosine 5′-monophosphate in solution. Biochemistry 38:14063–14068. doi: 10.1021/bi9900370 CrossRefGoogle Scholar
  37. 37.
    He F, Tang Y, Wang S, Li Y, Zhu D (2005) Fluorescent amplifying recognition for DNA G-quadruplex folding with a cationic conjugated polymer: a platform for homogeneous potassium detection. J Am Chem Soc 127:12343–12346. doi: 10.1021/ja051507i CrossRefGoogle Scholar
  38. 38.
    Gao Y, Li Y, Zhang L, Huang H, Hu JJ, Shah SM, Su XG (2012) Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. J Colloid Interface Sci 368:540–546. doi: 10.1016/j.jcis.2011.11.015 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Huimin Zhao
    • 1
  • Sheng Gao
    • 1
  • Meng Liu
    • 1
  • Yangyang Chang
    • 1
  • Xinfei Fan
    • 1
  • Xie Quan
    • 1
  1. 1.Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and TechnologyDalian University of TechnologyDalianChina

Personalised recommendations