Microchimica Acta

, Volume 180, Issue 9–10, pp 791–799

Bulk polymer nanoparticles containing a tetrakis(3-hydroxyphenyl)porphyrin for fast and highly selective separation of mercury ions

  • Mojtaba Shamsipur
  • Hamid Reza Rajabi
  • Mohammad Hassan Beyzavi
  • Hashem Sharghi
Original Paper

Abstract

We report on the synthesis of polymeric nanoparticles (PNPs) containing a tetrakis(3-hydroxyphenyl)porphyrin, and their use for the separation of mercury(II) ion. The PNPs were prepared by bulk polymerization from methacrylic acid (the monomer), ethyleneglycol dimethacrylate (the cross-linker), 2,2′-azobisisobutyronitrile (the radical initiator) and the mercury(II) complex of 5,10,15,20-tetrakis(3-hydroxyphenyl)-porphyrin. The Hg(II) ion was then removed by treatment with dilute hydrochloric acid. The PNPs were characterized by colorimetry, FT-IR spectroscopy, and scanning electron microscopy. The material is capable of binding Hg(II) from analyte samples. Bound Hg(II) ions can be eluted with dilute nitric acid and then quantified by cold vapor AAS. The extraction efficiency, the effects of pH, preconcentration and leaching times, sample volume, and of the nature, concentration and volume of eluent were investigated. The maximum adsorption capacity of the PNPs is 249 mg g−1, the relative standard deviation of the AAS assay is 2.2 %, and the limit of detection (3σ) is 8 ng.L−1. The nanoparticles exhibit excellent selectivity for Hg(II) ion over other metal ions and were successfully applied to the selective extraction and determination of Hg(II) ion in spiked water samples.

Figure

Schematic presentation of leaching process of mercury(II) ion from the prepared IIP

Keywords

Ion-imprinted polymeric nanoparticles Hg2+ ion 5,10,15,20-Tetrakis(3-hydroxyphenyl)-porphyrin Cold vapor atomic absorption spectrometry 

References

  1. 1.
    Kelly CA, Rudd JWM, Holoka MH (2003) Effect of pH on mercury uptake by an aquatic bacterium: implications for Hg cycling. Environ Sci Technol 37:2941CrossRefGoogle Scholar
  2. 2.
    Andac M, Mirel S, Senel S, Say R, Ersoz A, Denizli A (2007) Ion-imprinted beads for molecular recognition based mercury removal from human serum. Int J Biol Macromol 40:159CrossRefGoogle Scholar
  3. 3.
    Liu Y, Chang X, Wang S, Guo Y, Din B, Meng S (2004) Solid-phase extraction and preconcentration of cadmium(II) in aqueous solution with Cd(II)-imprinted resin (poly-Cd(II)-DAAB-VP) packed columns. Anal Chim Acta 519:173CrossRefGoogle Scholar
  4. 4.
    Rao TP, Daniel S, Gladis JM (2004) Tailored materials for preconcentration or separation of metals by ion-imprinted polymers for solid-phase extraction (IIP-SPE) Trac-Trend. Anal Chem 23:28Google Scholar
  5. 5.
    Rao TP, Kala R, Daniel S (2006) Metal ion-imprinted polymers-novel materials for selective recognition of inorganics. Anal Chim Acta 578:105CrossRefGoogle Scholar
  6. 6.
    Cui A, Singh A, Kaplan DL (2002) Enzyme-based molecular imprinting with metals. Biomacromolecules 3:1353CrossRefGoogle Scholar
  7. 7.
    Bozkurt SS, Ayata S, Kaynak I (2009) Fluorescence-based sensor for Pb(II) using tetra-(3-bromo-4-hydroxyphenyl)porphyrin in liquid and immobilized medium. Spectrochim Acta A 72:880CrossRefGoogle Scholar
  8. 8.
    Shamsipur M, Soleymanpour A, Akhond M, Sharghi H, Hasaninejad AR (2003) Perchlorate selective membrane electrodes based on a phosphorus(V)–tetraphenylporphyrin complex. Sensors Actuators B 89:9CrossRefGoogle Scholar
  9. 9.
    Balasoiu SC, Staden RS, Staden JF, Pruneanu S, Raduc G (2010) Carbon and diamond paste microelectrodes based on Mn(III) porphyrins for the determination of dopamine. Anal Chim Acta 668:201CrossRefGoogle Scholar
  10. 10.
    Staden JF, Stadenm RIS (2010) Application of porphyrins in flow-injection analysis: a review. Talanta 80:1598CrossRefGoogle Scholar
  11. 11.
    Singh DK, Mishra S (2010) Synthesis and characterization of Hg(II)-ion-imprinted polymer: kinetic and isotherm studies. Desalination 257:177CrossRefGoogle Scholar
  12. 12.
    Qu W, Zhai Y, Meng S, Fan Y, Zhao Q (2008) Selective solid phase extraction and preconcentration of trace mercury(II) with poly-allylthiourea packed columns. Microchim Acta 163:277CrossRefGoogle Scholar
  13. 13.
    Dakova I, Karadjova I, Georgieva V, Georgiev G (2009) Ion-imprinted polymethacrylic microbeads as new sorbent for preconcentration and speciation of mercury. Talanta 78:523CrossRefGoogle Scholar
  14. 14.
    Wang Z, Wu G, He C (2009) Ion-imprinted thiol-functionalized silica gel sorbent for selective separation of mercury ions. Microchim Acta 165:15Google Scholar
  15. 15.
    Firouzzare M, Qiuquan W (2012) Synthesis and characterization of a high selective mercury(II)-imprinted polymer using novel aminothiol monomer. Talanta 101:261CrossRefGoogle Scholar
  16. 16.
    Liu Y, Chang X, Yang D, Guo Y, Meng S (2005) Highly selective determination of inorganic mercury(II) after preconcentration with Hg(II)-imprinted diazoaminobenzene–vinylpyridine copolymers. Anal Chim Acta 538:85CrossRefGoogle Scholar
  17. 17.
    Shamsipur M, Fasihi J, Ashtari K (2007) Grafting of ion-imprinted polymers on the surface of silica gel particles through covalently surface-bound initiators: a selective sorbent for uranyl ion. Anal Chem 79:7116CrossRefGoogle Scholar
  18. 18.
    Shamsipur M, Fasihi J, Khanchi A, Hassani R, Alizadeh K, Shamsipur H (2007) A stoichiometric imprinted chelating resin for selective recognition of copper(II) ions in aqueous media. Anal Chim Acta 599:294CrossRefGoogle Scholar
  19. 19.
    Shamsipur M, Besharati-Seidani A (2011) Synthesis of a novel nanostructured ion-imprinted polymer for very fast and highly selective recognition of copper(II) ions in aqueous media. React Funct Polym 71:131CrossRefGoogle Scholar
  20. 20.
    Shamsipur M, Besharati-Seidani A, Fasihi J, Sharghi H (2010) Synthesis and characterization of novel ion-imprinted polymeric nanoparticles for very fast and highly selective recognition of copper(II) ions. Talanta 83:674CrossRefGoogle Scholar
  21. 21.
    Shamsipur M, Rajabi HR (2013) Flame photometric determination of cesium ion after its preconcentration with nanoparticles imprinted with the cesium-dibenzo-24-crown-8 complex. Microchim Acta 180:243CrossRefGoogle Scholar
  22. 22.
    Vatanpour V, Madaeni SS, Zinadini S, Rajabi HR (2011) Development of ion imprinted technique for designing nickel ion selective membrane. J Membr Sci 373:36CrossRefGoogle Scholar
  23. 23.
    Zhang L, Chang X, Hu Z, Zhang L, Shi J, Gao R (2010) Selective solid phase extraction and preconcentration of mercury(II) from environmental and biological samples using nanometer silica functionalized by 2,6-pyridine dicarboxylic acid. Microchim Acta 168:79–85CrossRefGoogle Scholar
  24. 24.
    Zhai Y, Duan S, He Q, Yang X, Han Q (2010) Solid phase extraction and preconcentration of trace mercury(II) from aqueous solution using magnetic nanoparticles doped with 1,5-diphenylcarbazide. Microchim Acta 169:353–360CrossRefGoogle Scholar
  25. 25.
    Jiang Y, Zhang H, He Q, Hu Z, Chang X (2012) Selective solid-phase extraction of trace mercury(II) using a silica gel modified with diethylenetriamine and thiourea. Microchim Acta 178:421–442CrossRefGoogle Scholar
  26. 26.
    Labrou NE, Karagouni A, Clonis YD (1995) Biomimetic-dye affinity adsorbents for enzyme purification: application to the one-step purification of Candida boidinii formate dehydrogenase. Biotechnol Bioeng 48:278CrossRefGoogle Scholar
  27. 27.
    Shamsipur M, Shokrollahi A, Sharghi H, Eskandari MM (2005) Solid phase extraction and determination of sub-ppb levels of hazardous Hg2+ ions. J Hazard Mater 117:129–133CrossRefGoogle Scholar
  28. 28.
    Shirmardi-Dezaki A, Shamsipur M, Akhond M, Sharghi H (2013) Electroanal Chem 689:63–68CrossRefGoogle Scholar
  29. 29.
    Zheng H, Geng T, Hu L (2008) Selective solid-phase extraction of Hg(II) using silica gel surface—imprinting technique. Chem Anal (Warsaw) 53:673Google Scholar
  30. 30.
    Fan Z (2006) Hg(II)-imprinted thiol-functionalized mesoporous sorbent micro-column preconcentration of trace mercury and determination by inductively coupled plasma optical emission spectrometry. Talanta 70:1164CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Mojtaba Shamsipur
    • 1
  • Hamid Reza Rajabi
    • 2
  • Mohammad Hassan Beyzavi
    • 3
  • Hashem Sharghi
    • 3
  1. 1.Department of ChemistryRazi UniversityKermanshahIran
  2. 2.Chemistry DepartmentYasouj UniversityYasoujIran
  3. 3.Department of ChemistryShiraz UniversityShirazIran

Personalised recommendations