Microchimica Acta

, Volume 180, Issue 5–6, pp 397–403

Streptavidin-enhanced surface plasmon resonance biosensor for highly sensitive and specific detection of microRNA

  • Decai Zhang
  • Yurong Yan
  • Wei Cheng
  • Wei Zhang
  • Yahui Li
  • Huangxian Ju
  • Shijia Ding
Original Paper


We are presenting a method for sensitive and specific detection of microRNA (miRNA) using surface plasmon resonance. A thiolated capture DNA probe with a short complete complementary sequence was immobilized on the gold surface of the sensor to recognize the part sequence of target miRNA, and then an oligonucleotide probe linked to streptavidin was employed to bind the another section of the target. The use of the streptavidin-oligonucleotide complex caused a ~5-fold increase in signal, improved the detection sensitivity by a factor of ~24, and lowered the detection limit to 1.7 fmol of miR-122. This specificity allowed a single mismatch in the target miRNA to be discriminated. The whole assay takes 30 min, and the surface of the sensor can be regenerated at least 30 times without loss in performance. The method was successfully applied to the determination of miRNA spiked into human total RNA samples.


A surface plasmon resonance (SPR) biosensor was developed for microRNA detection by using streptavidin to enhance SPR signal.


Surface plasmon resonance Biosensor MicroRNA Singal amplification Streptavidin 


  1. 1.
    Iorio M, Croce C (2012) MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med 4(3):143–159CrossRefGoogle Scholar
  2. 2.
    Mendell J, Olson E (2012) MicroRNAs in stress signaling and human disease. Cell 148(6):1172–1187CrossRefGoogle Scholar
  3. 3.
    Pasquinelli A (2012) MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet 13(4):271–282Google Scholar
  4. 4.
    Cullen B (2009) Viral and cellular messenger RNA targets of viral microRNAs. Nature 457(7228):421–425CrossRefGoogle Scholar
  5. 5.
    Harcourt E, Kool E (2012) Amplified microRNA detection by templated chemistry. Nucleic Acids Res 40(9):e65CrossRefGoogle Scholar
  6. 6.
    Nelson P, Baldwin D, Scearce L, Oberholtzer J, Tobias J, Mourelatos Z (2004) Microarray-based, high-throughput gene expression profiling of microRNAs. Nat Methods 1(2):155–161CrossRefGoogle Scholar
  7. 7.
    Ramkissoon S, Mainwaring L, Ogasawara Y, Keyvanfar K, McCoy J, Sloand E, Kajigaya S, Young N (2006) Hematopoietic-specific microRNA expression in human cells. Leuk Res 30(5):643–647CrossRefGoogle Scholar
  8. 8.
    Chen C, Ridzon D, Broomer A, Zhou Z, Lee D, Nguyen J, Barbisin M, Xu N, Mahuvakar V, Andersen M, Lao K, Livak K, Guegler K (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33(20):2–9CrossRefGoogle Scholar
  9. 9.
    Castoldi M, Schmidt S, Benes V, Hentze M, Muckenthaler M (2008) miChip: an array-based method for microRNA expression profiling using locked nucleic acid capture probes. Nat Protoc 3(2):321–329CrossRefGoogle Scholar
  10. 10.
    Liang R, Li W, Li Y, Tan C, Li J, Jin Y, Ruan K (2005) An oligonucleotide microarray for microRNA expression analysis based on labeling RNA with quantumdot and nanogold probe. Nucleic Acids Res 33(2):2–8CrossRefGoogle Scholar
  11. 11.
    Abell J, Garren J, Driskell J, Tripp R, Zhao Y (2012) Label-free detection of microRNA hybridization using surface-enhanced raman spectroscopy (SERS) and least-squares analysis. J Am Chem Soc 134(31):12889–12892CrossRefGoogle Scholar
  12. 12.
    Jing H, Song Q, Chen Z, Zou B, Chen C, Zhu M, Zhou G, Kajiyama T, Kambara H (2011) Dye-free microRNA quantification by using pyrosequencing with a sequence-tagged stem-loop RT primer. ChemBioChem 12(6):845–849CrossRefGoogle Scholar
  13. 13.
    Gao Z, Peng Y (2011) A highly sensitive and specific biosensor for ligation- and PCR-free detection of microRNAs. Biosens Bioelectron 26(9):3768–3773CrossRefGoogle Scholar
  14. 14.
    Yin H, Zhou Y, Zhang H, Meng X, Ai S (2012) Electrochemical determination of microRNA-21 based on graphene, LNA integrated molecular beacon, AuNPs and biotin multifunctional bio bar codes and enzymatic assay system. Biosens Bioelectron 33(1):247–253CrossRefGoogle Scholar
  15. 15.
    Yang W, Li X, Li Y, Zhao L, He W, Gao Y, Wan Y, Xia W, Chen T, Zheng H, Li M, Xu S (2008) Quantification of microRNA by gold nanoparticle probes. Anal Biochem 376(2):183–188CrossRefGoogle Scholar
  16. 16.
    Cheng Y, Zhang X, Li Z, Jiao X, Wang Y, Zhang Y (2009) Highly sensitive determination of microRNA using target-primed and branched rolling-circle amplification. Angew Chem Int Ed 121(18):3318–3322CrossRefGoogle Scholar
  17. 17.
    Zhou Y, Huang Q, Gao J, Lu J, Shen X, Fan C (2010) A dumbbell probe-mediated rolling circle amplification strategy for highly sensitive microRNA detection. Nucleic Acids Res 38(15):e156CrossRefGoogle Scholar
  18. 18.
    Cissell K, Rahimi Y, Shrestha S, Hunt E, Deo S (2008) Bioluminescence-based detection of microRNA, miR-21 in breast cancer cells. Anal Chem 80(7):2319–2325CrossRefGoogle Scholar
  19. 19.
    Driskell J, Seto A, Jones L, Jolela S, Dluhy R, Zhao Y, Tripp R (2008) Rapid microRNA (miRNA) detection and classification via surface-enhanced raman spectroscopy (SERS). Biosens Bioelectron 24(4):917–922CrossRefGoogle Scholar
  20. 20.
    Szabo A, Stolz L, Granzow R (1995) Surface plasmon resonance and its use in biomolecular interaction analysis (BIA). Curr Opin Struct Biol 5(5):699–705CrossRefGoogle Scholar
  21. 21.
    Homola J, Yee S, Gauglitz G (1999) Surface plasmon reonance sensors: review. Sens Actuat B-Chem 54(1–2):3–15CrossRefGoogle Scholar
  22. 22.
    Homola J (2003) Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 377(3):528–539CrossRefGoogle Scholar
  23. 23.
    Linman M, Abbas A, Cheng Q (2010) Interface design and multiplexed analysis with surface plasmon resonance (SPR) spectroscopy and SPR imaging. Analyst 135(11):2759–2767CrossRefGoogle Scholar
  24. 24.
    Chen H, Lee J, Jo W, Jeong M, Koh K (2011) Development of surface plasmon resonance immunosensor for the novel protein immunostimulating factor. Microchim Acta 172(1–2):171–176Google Scholar
  25. 25.
    Piliarik M, Párová L, Homola J (2009) High-throughput SPR sensor for food safety. Biosens Bioelectron 24(5):1399–1404CrossRefGoogle Scholar
  26. 26.
    Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108(2):462–493CrossRefGoogle Scholar
  27. 27.
    Piliarik M, Vaisocherová H, Homola J (2007) Towards parallelized surface Plasmon resonance sensor platform for sensitive detection of oligonucleotides. Sens Actuat B-Chem 121(1):187–193CrossRefGoogle Scholar
  28. 28.
    He L, Musick M, Nicewarner S, Salinas F, Benkovic S, Natan M, Keating C (2000) Colloidal Au-enhanced surface Plasmon resonance for ultrasensitive detection of DNA hybridization. J Am Chem Soc 122(38):9071–9077CrossRefGoogle Scholar
  29. 29.
    Goodrich T, Lee H, Corn R (2004) Direct detection of genomic DNA by enzymatically amplified SPR imaging measurements of RNA microarrays. J Am Chem Soc 126(13):4086–4087CrossRefGoogle Scholar
  30. 30.
    Zhang Y, Mu Y, Zhou C, Song Q, Jin W, Jin Q (2012) Detection of mismatched caspase-3 DNA oligonucleotides with an SPR biosensor following amplification by Taq polymerase. Microchim Acta 177(3–4):435–441Google Scholar
  31. 31.
    Zhang D, Yan Y, Li Q, Yu T, Cheng W, Wang L, Ju H, Ding S (2012) Label-free and high-sensitive detection of Salmonella using a surface plasmon resonance DNA-based biosensor. J Biotechnol 160(3–4):123–128CrossRefGoogle Scholar
  32. 32.
    Šípová H, Zhang S, Dudley A, Galas D, Wang K, Homola J (2010) Surface plasmon resonance biosensor for rapid label-free detection of microribonucleic acid at subfemtomole level. Anal Chem 82(24):10110–10115CrossRefGoogle Scholar
  33. 33.
    Šípová H, Špringer T, Homola J (2011) Streptavidin-enhanced assay for sensitive and specific detection of single nucleotide polymorphism in TP53. Anal Bioanal Chem 399(7):2343–2350CrossRefGoogle Scholar
  34. 34.
    Tsai W, Hsu P, Lai T, Chau G, Lin C, Chen C, Lin C, Liao Y, Wang J, Chau Y, Hsu M, Hsiao M, Huang H, Tsou A (2009) MicroRNA-122, a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatocellular carcinoma. Hepatology 49(5):1571–1582CrossRefGoogle Scholar
  35. 35.
    Weber P, Ohlendorf D, Wendoloski J, Salemme F (1989) Structural origins of high-affinity biotin binding to streptavidin. Science 243(4887):85–88CrossRefGoogle Scholar
  36. 36.
    Pöhlmann C, Sprinzl M (2010) Electrochemical detection of microRNAs via gap hybridization assay. Anal Chem 82(11):4434–4440CrossRefGoogle Scholar
  37. 37.
    Lee J, Li Y, Wark A, Corn R (2005) Enzymatically amplified surface plasmon resonance imaging detection of DNA by exonuclease III digestion of DNA microarrays. Anal Chem 77(16):5096–5100CrossRefGoogle Scholar
  38. 38.
    Cui L, Lin X, Lin N, Song Y, Zhu Z, Chen X, Yang C (2012) Graphene oxide-protected DNA probes for multiplex microRNA analysis in complex biological samples based on a cyclic enzymatic amplification method. Chem Commun 48(2):194–196CrossRefGoogle Scholar
  39. 39.
    Wang G, Zhang C (2012) Sensitive detection of microRNAs with hairpin probe-based circular exponential amplification assay. Anal Chem 84(16):7037–7042CrossRefGoogle Scholar
  40. 40.
    Blenkiron C, Goldstein L, Thorne N, Spiteri I, Chin S, Dunning M, Barbosa-Morais N, Teschendorff A, Green A, Ellis I, Tavaré S, Caldas C, Miska E (2007) MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genom Biol 8(10):R214CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Decai Zhang
    • 1
  • Yurong Yan
    • 1
  • Wei Cheng
    • 2
  • Wei Zhang
    • 1
  • Yahui Li
    • 1
  • Huangxian Ju
    • 1
    • 3
  • Shijia Ding
    • 1
  1. 1.Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory MedicineChongqing Medical UniversityChongqingPeople’s Republic of China
  2. 2.Molecular Oncology and Epigenetics LaboratoryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingPeople’s Republic of China
  3. 3.State Key Laboratory of Analytical Chemistry for Life Science, Department of ChemistryNanjing UniversityNanjingPeople’s Republic of China

Personalised recommendations