Microchimica Acta

, Volume 180, Issue 3–4, pp 311–318 | Cite as

Magnetic particles–based biosensor for biogenic amines using an optical oxygen sensor as a transducer

  • Kristyna Pospiskova
  • Ivo Safarik
  • Marek Sebela
  • Gabriela Kuncova
Short Communication


We have developed a fibre optic biosensor with incorporated magnetic microparticles for the determination of biogenic amines. The enzyme diamine oxidase from Pisum sativum was immobilized either on chitosan-coated magnetic microparticles or on commercial microbeads modified with a ferrofluid. Both the immobilized enzyme and the ruthenium complex were incorporated into a UV-cured inorganic–organic polymer composite and deposited on a lens that was connected, by optical fibres, to an electro-optical detector. The enzyme catalyzes the oxidation of amines under consumption of oxygen. The latter was determined by measuring the quenched fluorescence lifetime of the ruthenium complex. The limits of detection for the biogenic amines putrescine and cadaverine are 25–30 μmol L−1, and responses are linear up to a concentration of 1 mmol L−1.


Response (fluorescence lifetime) of a novel optical biosensor for biogenic amines (putrescine, cadaverine) determination based on Pisum sativum diamine oxidase immobilized on magnetically responsive chitosan microparticles with entrapped magnetite encapsulated in inorganic–organic polymer ORMOCER® together with ruthenium complex.


Magnetic carriers Optical fibre biosensor Diamine oxidase Fluorescence quenching Ruthenium complex 



This work was supported by the Action COST TD1003 (Bio-inspired nanotechnologies: from concepts to applications), by the OP RD&I grant no. ED0007/01/01 (Centre of the Region Haná for Biotechnological and Agricultural Research) and by the Grant Agency of the Czech Republic (grant No. IAAX08240901).


  1. 1.
    Naila A, Flint S, Fletcher G, Bremer P, Meerdink G (2010) Control of biogenic amines in food—existing and emerging approaches. J Food Sci 75(7):R139–R150CrossRefGoogle Scholar
  2. 2.
    Ali MA, Poortvliet E, Stromberg R, Yngve A (2011) Polyamines in foods: development of a food database. Food Nutr Res 55:5572. doi: 10.3402/fnr.v55i0.5572 Google Scholar
  3. 3.
    Kalac P, Krausova P (2005) A review of dietary polyamines: formation, implications for growth and health and occurrence in foods. Food Chem 90:219–230CrossRefGoogle Scholar
  4. 4.
    Karovicova J, Kohajdova Z (2005) Biogenic amines in food. Chem Papers 59:70–79Google Scholar
  5. 5.
    Shalaby AR (1996) Significance of biogenic amines to food safety and human health. Food Res Int 29:675–690CrossRefGoogle Scholar
  6. 6.
    Kalac P, Krizek M (2003) A review of biogenic amines and polyamines in beer. J Inst Brew 109(2):123–128CrossRefGoogle Scholar
  7. 7.
    Kivirand K, Rinken T (2011) Biosensors for biogenic amines: the present state of art mini-review. Anal Lett 44:2821–2833CrossRefGoogle Scholar
  8. 8.
    Mello LD, Kubota LT (2002) Review of the use of biosensors as analytical tools in the food and drink industries. Food Chem 77:237–256CrossRefGoogle Scholar
  9. 9.
    Scully PJ, Betancor L, Bolyo J, Dzyadevych S, Guisan JM, Fernandez-Lafuente R, Jaffrezic-Renault N, Kuncova G, Matejec V, O’Kennedy B, Podrazky O, Rose K, Sasek L, Young JS (2007) Optical fibre biosensors using enzymatic transducers to monitor glucose. Meas Sci Technol 18:3177–3186CrossRefGoogle Scholar
  10. 10.
    Halling PJ, Dunnill P (1980) Magnetic supports for immobilized enzymes and bioaffinity adsorbents. Enzyme Microb Technol 2:2–10CrossRefGoogle Scholar
  11. 11.
    Safarik I, Safarikova M (2009) Magnetic nano- and microparticles in biotechnology. Chem Papers 63:497–505CrossRefGoogle Scholar
  12. 12.
    Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110CrossRefGoogle Scholar
  13. 13.
    Guisan JM (ed) (2006) Immobilization of enzymes and cells (second edition). Humana Press, TotowaGoogle Scholar
  14. 14.
    Mistlberger G, Koren K, Scheucher E, Aigner D, Borisov SM, Zankel A, Polt P, Klimant I (2010) Multifunctional magnetic optical sensor particles with tunable sizes for monitoring metabolic parameters and as a basis for nanotherapeutics. Adv Funct Mater 20:1842–1851CrossRefGoogle Scholar
  15. 15.
    Lamplot Z, Sebela M, Malon M, Lenobel R, Lemr K, Havlis J, Pec P, Qiao CH, Sayre LM (2004) 1,5-Diamino-2-pentyne is both a substrate and inactivator of plant copper amineoxidases. Eur J Biochem 271:4696–4708CrossRefGoogle Scholar
  16. 16.
    Safarik I, Horska K, Pospiskova K, Safarikova M (2012) One-step preparation of magnetically responsive materials from non-magnetic powders. Powder Technol 229:285–289CrossRefGoogle Scholar
  17. 17.
    Massart R (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn 17(2):1247–1248CrossRefGoogle Scholar
  18. 18.
    Safarik I, Horska K, Martinez LM, Safarikova M (2010) Large scale magnetic separation of please Solanum tuberosum tuber lectin from potato starch waste water. AIP Conf Proc 1311:146–151CrossRefGoogle Scholar
  19. 19.
    Shrivastava A, Gupta VB (2011) Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chronicles Young Sci 2(1):21–25CrossRefGoogle Scholar
  20. 20.
    Rinken T, Rinken P, Kivirand K (2011) Signal analysis and calibration of biosensors for biogenic amines in the mixtures of several substrates. In: Serra PA (ed) Biosensors—Emerging Materials and Applications. InTech. doi: 10.5772/16308
  21. 21.
    Stevanato R, Porchia M, Befani O, Mondovi B, Rigo A (1989) Characterization of free and immobilized amine oxidases. Biotechnol Appl Biochem 11(3):266–272Google Scholar
  22. 22.
    Boka B, Adanyi N, Virag D, Sebela M, Kiss A (2012) Spoilage detection with biogenic amine biosensors, comparison of different enzyme electrodes. Electroanalysis 24:181–186CrossRefGoogle Scholar
  23. 23.
    Nakamura M, Sanji T, Tanaka M (2011) Fluorometric sensing of biogenic amines with aggregation-induced emission-active tetraphenylethenes. Chem Eur J 17:5344–5349CrossRefGoogle Scholar
  24. 24.
    Steiner M-S, Meier RJ, Duerkop A, Wolfbeis OS (2010) Chromogenic sensing of biogenic amines using a chameleon probe and the red-green-blue readout of digital camera images. Anal Chem 82:8402–8405CrossRefGoogle Scholar
  25. 25.
    Borisov SM, Wolfbeis OS (2008) Optical biosensors. Chem Rev 108:423–461CrossRefGoogle Scholar
  26. 26.
    McDonagh C, Burke CS, MacCraith BD (2008) Optical chemical sensors. Chem Rev 108:400–422CrossRefGoogle Scholar
  27. 27.
    Pividori MA, Alegret S (2010) Micro and nanoparticles in biosensing systems for food safety and environmental monitoring. An example of converging technologies. Microchim Acta 170:227–242CrossRefGoogle Scholar
  28. 28.
    Mohr GJ, Klimant I, Spichiger-Keller UE, Wolfbeis OS (2001) Fluoro reactands and dual luminophore referencing: a technique to optically measure amines. Anal Chem 73:1053–1056CrossRefGoogle Scholar
  29. 29.
    Korent SP, Lobnik A, Mohr GJ (2007) Sol–gel-based optical sensor for the detection of aqueous amines. Anal Bioanal Chem 387:2863–2870CrossRefGoogle Scholar
  30. 30.
    Moradian A, Mohr GJ, Linnhoff M, Fehlmann M, Spichiger-Keller UE (2000) Continuous optical monitoring of aqueous amines in transflectance mode. Sensor Actuat B 62:154–161CrossRefGoogle Scholar
  31. 31.
    Garcia-Acosta B, Comes M, Bricks JL, Kudinova MA, Kurdyukov VV, Tolmachev AI, Descalzo AB, Marcos MD, Martinez-Manez R, Moreno A, Sancenon F, Soto J, Villaescusa LA, Rurack K, Barat JM, Escriche I, Amoros P (2006) Sensory hybrid host materials for the selective chromo-fluorogenic detection of biogenic amines. Chem Commun 21:2239–2241CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2012

Authors and Affiliations

  • Kristyna Pospiskova
    • 1
  • Ivo Safarik
    • 2
    • 3
  • Marek Sebela
    • 1
    • 4
  • Gabriela Kuncova
    • 5
  1. 1.Department of Biochemistry, Faculty of SciencePalacky UniversityOlomoucCzech Republic
  2. 2.Department of NanobiotechnologyInstitute of Nanobiology and Structural Biology of GCRC, Academy of SciencesCeske BudejoviceCzech Republic
  3. 3.Regional Centre of Advanced Technologies and MaterialsPalacky UniversityOlomoucCzech Republic
  4. 4.Department of Protein Biochemistry and Proteomics, Centre of the Region Hana for Biotechnological and Agricultural Research, Faculty of SciencePalacky UniversityOlomoucCzech Republic
  5. 5.Institute of Chemical Process Fundamentals, Academy of SciencesPrague 6Czech Republic

Personalised recommendations