Advertisement

Microchimica Acta

, Volume 180, Issue 3–4, pp 161–186 | Cite as

Non-enzymatic electrochemical sensing of glucose

  • Guangfeng Wang
  • Xiuping He
  • Lingling Wang
  • Aixia Gu
  • Yan Huang
  • Bin Fang
  • Baoyou Geng
  • Xiaojun Zhang
Review Article

Abstract

This article reviews the progress made in the past 5 years in the field of direct and non-enzymatic electrochemical sensing of glucose. Following a brief discussion of the merits and limitations of enzymatic glucose sensors, we discuss the history of unraveling the mechanism of direct oxidation of glucose and theories of non-enzymatic electrocatalysis. We then review non-enzymatic glucose electrodes based on the use of the metals platinum, gold, nickel, copper, of alloys and bimetals, of carbon materials (including graphene and graphene-based composites), and of metal-metal oxides and layered double hydroxides. This review contains more than 200 refs.

Figure

This article reviews the history of unraveling the mechanism of direct electrochemical glucose oxidation and the attempts to successfully develop non-enzymatic electrochemical glucose sensors over the past 5 years.

Keywords

Non-enzymatic Glucose Electrochemical sensors 

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (20901003, 20971003, 21073001 and 21005001), the Key Project of the Chinese Ministry of Education (209060), Anhui Provincial Natural Science Foundation (1208085QB28), Natural Science Foundation of Anhui (KJ2012A139) and the Program for Innovative Research Team at Anhui Normal University.

References

  1. 1.
    WHO (2009) Fact sheet No. 312 in World Health OrganizationGoogle Scholar
  2. 2.
    Wang J (2008) Electrochemical glucose biosensors. Chem Rev 108:814–825CrossRefGoogle Scholar
  3. 3.
    Updike SJ, Hicks GP (1967) The enzyme electrode. Nature 214:986–988CrossRefGoogle Scholar
  4. 4.
    Clark LC, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102:29–45CrossRefGoogle Scholar
  5. 5.
    Tsai TW, Heckert G, Neves LF, Tan YQ, Kao DY, Harrison RG, Resasco DE, Schmidtke DW (2009) Adsorption of glucose oxidase onto single-walled carbon nanotubes and its application in layer-by-layer biosensors. Anal Chem 81:7917–7925CrossRefGoogle Scholar
  6. 6.
    Kang XH, Mai ZB, Zou XY, Cai PX, Mo JY (2007) A novel glucose biosensor based on immobilization of glucose oxidase in chitosan on a glassy carbon electrode modified with gold-platinum alloy nanoparticles/multiwall carbon nanotubes. Anal Biochem 363:143–150CrossRefGoogle Scholar
  7. 7.
    Li X, Zhu QY, Tong SF, Wang W, Song WB (2009) Self-assembled microstructure of carbon nanotubes for enzymeless glucose sensor. Sens Actuators B 136:444–450CrossRefGoogle Scholar
  8. 8.
    Wilson R, Turner APF (1992) Glucose oxidase: an ideal enzyme. Biosens Bioelectron 7:165–185CrossRefGoogle Scholar
  9. 9.
    Park S, Boo H, Chung TD (2006) Electrochemical non-enzymatic glucose sensors. Anal Chim Acta 556:46–57CrossRefGoogle Scholar
  10. 10.
    Toghill KE, Compton RG (2010) Electrochemical non-enzymatic glucose sensors: a perspective and an evaluation. Int J Electrochem Sci 5:1246–1301Google Scholar
  11. 11.
    Steiner MS, Duerkop A, Wolfbeis OS (2011) Optical methods for sensing glucose. Chem Soc Rev 40:4805–4839CrossRefGoogle Scholar
  12. 12.
    Wang Y, Xu H, Zhang J, Li G (2008) Electrochemical sensors for clinic analysis. Sensors 8:2043–2081CrossRefGoogle Scholar
  13. 13.
    Morikawa M, Kimizuka N, Yoshihara M, Endo T (2002) New colorimetric detection of glucose by means of electron-accepting indicators: ligand substitution of [Fe(acac)3− n(phen)n]n+complexes triggered by electron transfer from glucose oxidase. Chem Eur J 8:5580–5584CrossRefGoogle Scholar
  14. 14.
    Miwa Y, Nishizawa M, Matsue T, Uchida I (1994) A conductometric glucose sensor based on a twin-microband electrode coated with a polyaniline thin film. Bull Chem Soc Jp 67:2864–2866CrossRefGoogle Scholar
  15. 15.
    Mansouri S, Schultz JS (1984) A miniature optical glucose sensor based on affinity binding. Nat Biotech 2:885–890CrossRefGoogle Scholar
  16. 16.
    Pickup JC, Hussain F, Evans ND, Rolinski OJ, Birch DJS (2005) Fluorescence-based glucose sensors. Biosens Bioelectron 20:2555–2565CrossRefGoogle Scholar
  17. 17.
    Liu J, Wang J (2001) A novel improved design for the first-generation glucose biosensor. Food Technol Biotechnol 39:55–58Google Scholar
  18. 18.
    Tang FQ, Meng XW, Chen D, Ran JG, Zheng CQ (2000) Glucose biosensor enhanced by nanoparticles. Sci China B 43:268–274CrossRefGoogle Scholar
  19. 19.
    Degani Y, Heller A (1989) Electrical communication between redox centers of glucose oxidase and electrodes via electrostatically and covalently bound redox polymers. J Am Chem Soc 111:2357–2358CrossRefGoogle Scholar
  20. 20.
  21. 21.
    Li J, Lin X (2007) Glucose biosensor based on immobilization of glucose oxidase in poly (o-aminophenol) film on polypyrrole-Pt nanocomposite modified glassy carbon electrode. Biosens Bioelectron 22:2898–2905CrossRefGoogle Scholar
  22. 22.
    Wu B, Zhang G, Shuang S, Choi MMF (2004) Biosensors for determination of glucose with glucose oxidase immobilized on an eggshell membrane. Talanta 64:546–553CrossRefGoogle Scholar
  23. 23.
    Han K, Wu Z, Lee J, Ahn I, Park JW, Min BR, Lee K (2005) Activity of glucose oxidase entrapped in mesoporous gels. Biochem Eng J 22:161–166CrossRefGoogle Scholar
  24. 24.
    Heller A, Feldman B (2010) Electrochemistry in diabetes management. Acc Chem Res 43:963–973CrossRefGoogle Scholar
  25. 25.
    Mao F, Heller A Preparation of transition metal complexes with (pyridyl)imidazole ligands for use in enzyme-based electrochemical sensors. (Main IPC: C07F015-00., Patent Application Country: Application: US; Patent Country: US; Priority Application Country: US, 2003), 2002-143300; 2001-290537, p 23Google Scholar
  26. 26.
    Heller A, Feldman BJ, Say J, Vreeke MS, Tomasco MF (2003) Small volume in vitro analyte sensor. Main IPC: G01N027-327.; Secondary IPC: C12Q001-00., PCT 98-US2652; 97-795767, p 83Google Scholar
  27. 27.
    Loeb W (1909) Sugar decomposition III. Electrolysis of dextrose. Biochemische Zeitschrift Biochem Z 17:132–144Google Scholar
  28. 28.
    Largeaud F, Kokoh KB, Beden B, Lamy C (1995) On the electrochemical reactivity of anomers: electrocatalytic oxidation of α-and β-d-glucose on platinum electrodes in acid and basic media. J Electroanal Chem 397:261–269CrossRefGoogle Scholar
  29. 29.
    Pletcher D (1984) Electrocatalysis: present and future. J Appl Electrochem 14:403–415CrossRefGoogle Scholar
  30. 30.
    Kokkinidis G, Leger JM, Lamy C (1988) Structural effects in electrocatalysis: oxidation of D-glucose on pt (100), (110) and (111) single crystal electrodes and the effect of upd adlayers of Pb, Tl and Bi. J Electroanal Chem Interfacial Electrochem 242:221–242CrossRefGoogle Scholar
  31. 31.
    Hsiao MW, Adzic RR, Yeager EG (1996) Electrochemical oxidation of glucose on single crystal and polycrystalline gold surfaces in phosphate buffer. J Electrochem Soc 143:759–767CrossRefGoogle Scholar
  32. 32.
    Vasil’ev YB, Khazova OA, Nikolaeva NN (1985) Kinetics and mechanism of glucose electrooxidation on different electrode-catalysts: Part II. Effect of the nature of the electrode and the electrooxidation mechanism. J Electroanal Chem Interfacial Electrochem 196:127–144CrossRefGoogle Scholar
  33. 33.
    Bagotskii VS, Vasil’ev YB (1967) Mechanism of electrooxidation of methanol on the platinum electrode. Electrochim Acta 12:1323–1343CrossRefGoogle Scholar
  34. 34.
    Larew LA, Johnson DC (1989) Transient generation of diffusion layer alkalinity for the pulsed amperometric detection of glucose in low capacity buffers having neutral and acidic pH values. J Electroanal Chem Interfacial Electrochem 262:167–182CrossRefGoogle Scholar
  35. 35.
    Burke LD (1994) Premonolayer oxidation and its role in electrocatalysis. Electrochim Acta 39:1841–1848CrossRefGoogle Scholar
  36. 36.
    Ernst S, Heitbaum J, Hamann CH (1979) The electrooxidation of glucose in phosphate buffer solutions: part I. Reactivity and kinetics below 350 mV/RHE. J Electroanal Chem 100:173–183CrossRefGoogle Scholar
  37. 37.
    Shim JH, Jang KY, Lee C, Lee Y (2011) Applications of porous Pt-filled micropore electrode: direct amperometric glucose detection and potentiometric pH sensing. Electroanalysis 23:2063–2069CrossRefGoogle Scholar
  38. 38.
    Joo SY, Park SJ, Chung TD, Kim HC (2007) Integration of a nanoporous platinum thin film into a microfluidic system for non-enzymatic electrochemical glucose sensing. Anal Sci 23:277–281CrossRefGoogle Scholar
  39. 39.
    Yuan JH, Wang K, Xia XH (2005) Highly ordered platinum-nanotubule arrays for amperometric glucose sensing. Adv Funct Mater 15:803–809CrossRefGoogle Scholar
  40. 40.
    Guo MQ, Hong HS, Tang XN, Fang HD, Xu XH (2012) Ultrasonic electrodeposition of platinum nanoflowers and their application in nonenzymatic glucose sensors. Electrochim Acta 63:1–8CrossRefGoogle Scholar
  41. 41.
    Huang J (2008) 3-D nanoporous Pt electrode prepared by a 2-D UPD monolayer process. Electroanalysis 20:2229–2234CrossRefGoogle Scholar
  42. 42.
    Chou C, Chen J, Tai C, Sun I, Zen JA (2008) Nonenzymatic glucose sensor using nanoporous platinum electrodes prepared by electrochemical alloying/dealloying in a water-insensitive zinc chloride-1-ethyl-3- methylimidazolium chloride ionic liquid. Electroanalysis 20:771–775CrossRefGoogle Scholar
  43. 43.
    Lee Y, Park D, Park J, Kim Y (2008) Fabrication and optimization of a nanoporous platinum electrode and a non-enzymatic glucose micro-sensor on silicon. Sensors 8:6154–6164CrossRefGoogle Scholar
  44. 44.
    Song Y, Zhang D, Gao W, Xia X (2005) Nonenzymatic glucose detection by using a three-dimensionally ordered, macroporous platinum template. Chem Eur J 11:2177–2182CrossRefGoogle Scholar
  45. 45.
    Lee YJ, Park DJ, Park JY (2008) Fully packaged nonenzymatic glucose microsensors with nanoporous platinum electrodes for anti-fouling. IEEE Sens J 8:1922–1927CrossRefGoogle Scholar
  46. 46.
    Cao Z, Zou Y, Xiang C, Sun L, Xu F (2007) Amperometric glucose biosensor based on ultrafine platinum nanoparticles. Anal Lett 40:2116–2127CrossRefGoogle Scholar
  47. 47.
    Shen QM, Jiang LP, Zhang H, Min QH, Hou WH, Zhu JJ (2008) Three-dimensional dendritic Pt nanostructures: Sonoelectrochemical synthesis and electrochemical applications. J Phys Chem C 112:16385–16392CrossRefGoogle Scholar
  48. 48.
    Luo P, Zhang F, Baldwin RP (1991) Comparison of metallic electrodes for constant-potential amperometric detection of carbohydrates, amino acids and related compounds in flow systems. Anal Chim Acta 244:169–178CrossRefGoogle Scholar
  49. 49.
    Fanguy C, Henry CS (2002) Pulsed amperometric detection of carbohydrates on an electrophoretic microchip. Analyst 127:1021–1023CrossRefGoogle Scholar
  50. 50.
    Park SY, Park SJ, Jeong RA, Boo HK, Park JY, Kim HC, Chung TD (2012) Nonenzymatic continuous glucose monitoring in human whole blood using electrified nanoporous Pt. Biosens Bioelectron 31:284–291CrossRefGoogle Scholar
  51. 51.
    Vasil’ev YB, Khazova OA, Nikolaeva NN (1985) Kinetics and mechanism of glucose electrooxidation on different electrode-catalysts: part I. Adsorption and oxidation on platinum. J Electroanal Chem Interfacial Electrochem 196:105–125CrossRefGoogle Scholar
  52. 52.
    Burke LD (2004) Scope for new applications for gold arising from the electrocatalytic behaviour of its metastable surface states. Gold Bull 37:125–135CrossRefGoogle Scholar
  53. 53.
    Hsiao MW, Adzic RR, Yeager EB (1992) The effects of adsorbed anions on the oxidation of D-glucose on gold single crystal electrodes. Electrochim Acta 37:357–363CrossRefGoogle Scholar
  54. 54.
    Luna AMC, Mele MFL, Arvia AJ (1992) The electro-oxidation of glucose on microcolumnar gold electrodes in different neutral solutions. J Electroanal Chem 323:149–162CrossRefGoogle Scholar
  55. 55.
    Cheng TM, Huang TK, Lin HK, Tung SP, Chen YL, Lee CY, Chiu HT (2010) (110)-Exposed gold nanocoral electrode as low onset potential selective glucose sensor. ACS Appl Mater Interfaces 2:2773–2780CrossRefGoogle Scholar
  56. 56.
    Xu FG, Cui K, Sun YJ, Guo CL, Liu ZL, Zhang Y, Shi Y, Li Z (2010) Facile synthesis of urchin-like gold submicrostructures for nonenzymatic glucose sensing. Talanta 82:1845–1852CrossRefGoogle Scholar
  57. 57.
    Li Y, Song YY, Yang C, Xia XH (2007) Hydrogen bubble dynamic template synthesis of porous gold for nonenzymatic electrochemical detection of glucose. Electrochem Commun 9:981–988CrossRefGoogle Scholar
  58. 58.
    Xia Y, Huang W, Zheng JF, Niu ZJ, Li ZL (2011) Nonenzymatic amperometric response of glucose on a nanoporous gold film electrode fabricated by a rapid and simple electrochemical method. Biosens Bioeletron 26:3555–3561CrossRefGoogle Scholar
  59. 59.
    Cho S, Kang C (2007) Nonenzymatic glucose detection with good selectivity against ascorbic acid on a highly porous gold electrode subjected to amalgamation treatment. Electroanalysis 19:2315–2320CrossRefGoogle Scholar
  60. 60.
    Li JJ, Yuan R, Chai YQ, Che X, Li WJ, Zhong X (2011) Nonenzymatic glucose sensor based on a glassy carbon electrode modified with chains of platinum hollow nanoparticles and porous gold nanoparticles in a chitosan membrane. Microchim Acta 172:163–169CrossRefGoogle Scholar
  61. 61.
    Kurniawan F, Tsakova V, Mirsky VM (2006) Gold nanoparticles in nonenzymatic electrochemical detection of sugars. Electroanalysis 18:1937–1942CrossRefGoogle Scholar
  62. 62.
    Yi Q, Yu W (2009) Electrocatalytic activity of a novel titanium-supported nanoporous gold catalyst for glucose oxidation. Microchim Acta 165:381–386CrossRefGoogle Scholar
  63. 63.
    Cherevko S, Chung C (2009) Gold nanowire array electrode for non-enzymatic voltammetric and amperometric glucose detection. Sens Actuators B 142:216–223CrossRefGoogle Scholar
  64. 64.
    Yu J, Lu S, Li J, Zhao F, Zeng B (2007) Characterization of gold nanoparticles electrochemically deposited on amine-functioned mesoporous silica films and electrocatalytic oxidation of glucose. J Solid State Electrochem 11:1211–1219CrossRefGoogle Scholar
  65. 65.
    Feng D, Wang F, Chen Z (2009) Electrochemical glucose sensor based on one-step construction of gold nanoparticle-chitosan composite film. Sens Actuators B 138:539–544CrossRefGoogle Scholar
  66. 66.
    Zhao J, Yu J, Wang F, Hu S (2007) Fabrication of gold nanoparticle-dihexadecyl hydrogen phosphate film on a glassy carbon electrode. Microchim Acta 156:277–282Google Scholar
  67. 67.
    Bai Y, Yang W, Sun Y, Sun C (2008) Enzyme-free glucose sensor based on a three-dimensional gold film electrode. Sens Actuators B 134:471–476CrossRefGoogle Scholar
  68. 68.
    Zhou Y, Yang S, Qian Q, Xia X (2009) Gold nanoparticles integrated in a nanotube array for electrochemical detection of glucose. Electrochem Commun 11:216–219CrossRefGoogle Scholar
  69. 69.
    Ma Y, Di J, Yan X, Zhao M, Lu Z, Tu Y (2009) Direct electrodeposition of gold nanoparticles on indium tin oxide surface and its application. Biosens Bioelectron 24:1480–1483CrossRefGoogle Scholar
  70. 70.
    Zhao W, Xu JJ, Shi CG, Chen HY (2006) Fabrication, characterization and application of gold nano-structured film. Electrochem Commun 8:773–778CrossRefGoogle Scholar
  71. 71.
    Welch E, Mead DAJ, Johnson DC (1988) A comparison of pulsed amperometric detection and conductivity detection for carbohydrates. Anal Chim Acta 204:323–327CrossRefGoogle Scholar
  72. 72.
    Bindra DS, Wilson GS (1989) Pulsed amperometric detection of glucose in biological fluids at a surface-modified gold electrode. Anal Chem 61:2566–2570CrossRefGoogle Scholar
  73. 73.
    SurareungchaiW DW, Tasakorn P (2001) Quadruple-pulsed amperometric detection for simultaneous flow injection determination of glucose and fructose. Anal Chim Acta 448:215–220CrossRefGoogle Scholar
  74. 74.
    Sattar MA, Conway BE (1969) Eelectrochemistry of the nickel-oxide electrode-VI. Surface oxidation of nickel anodes in alkaline solution. Electrochim Acta 14:705–710CrossRefGoogle Scholar
  75. 75.
    Fleischmann M, Korinek K, Pletcher D (1971) The oxidation of organic compounds at a nickel anode in alkaline solution. J Electroanal Chem Interfacial Electrochem 31:39–49CrossRefGoogle Scholar
  76. 76.
    Bode H, Dehmelt K, Witte J (1966) Zur Kenntnis der Nickelhydroxidelektrode–I. Über das Nickel (II)-hydroxidhydrat. Electrochim Acta 11:1079–1087CrossRefGoogle Scholar
  77. 77.
    Guzman RSS, Vilche JR, Arvia AJ (1978) The potentiodynamic behaviour of iron in alkaline solutions. Electrochim Acta 8:67–70Google Scholar
  78. 78.
    Wolf JF, Yeh LSR, Damjanovic A (1981) Anodic oxide films at nickel electrodes in alkaline solutions. I. Kinetics of growth of the β-Ni(OH)2 phase. Electrochim Acta 26:409–416CrossRefGoogle Scholar
  79. 79.
    Lu LM, Zhang L, Qu FL, Lu HX, Zhang XB, Wu ZS, Huan SY, Wang QA, Shen GL, Yu RQ (2009) A nano-Ni based ultrasensitive nonenzymatic electrochemical sensor for glucose: enhancing sensitivity through a nanowire array strategy. Biosens Bioeletron 25:218–223CrossRefGoogle Scholar
  80. 80.
    Zhao CZ, Shao CL, Li MH, Jiao K (2007) Flow-injection analysis of glucose without enzyme based on electrocatalytic oxidation of glucose at a nickel electrode. Talanta 71:1769–1773CrossRefGoogle Scholar
  81. 81.
    Salimi A, Roushani M (2005) Non-enzymatic glucose detection free of ascorbic acid interference using nickel powder and nafion sol–gel dispersed renewable carbon ceramic electrode. Electrochem Commun 7:879–887CrossRefGoogle Scholar
  82. 82.
    Ivandini TA, Sato R, Makide Y, Fujishima A, Einaga Y (2004) Electroanalytical application of modified diamond electrodes. Diamond Relat Mater 13:2003–2008CrossRefGoogle Scholar
  83. 83.
    You T, Niwa O, Chen Z, Hayashi K, Tomita M, Hirono S (2003) An amperometric detector formed of highly dispersed Ni nanoparticles embedded in a graphite-like carbon film electrode for sugar determination. Anal Chem 75:5191–5196CrossRefGoogle Scholar
  84. 84.
    Sue JW, Hung C, Chen W, Zen J (2008) Amperometric determination of sugars at activated barrel plating nickel electrodes. Electroanalysis 20:1647–1654CrossRefGoogle Scholar
  85. 85.
    Goto M, Miyahara H, Ishii D (1990) Constant-potential amperometric detector for carbohydrates at a nickel(III) oxide electrode for micro-scale flow-injection analysis and high-performance liquid chromatography. J Chromatogr A 515:213–220CrossRefGoogle Scholar
  86. 86.
    Stitz A, Buchberger W (1994) Studies on electrochemical reactions at metal-oxide electrodes for combination with high-performance liquid chromatography. Electroanalysis 6:251–258CrossRefGoogle Scholar
  87. 87.
    Uto M, Kodama K, Ishimori K, Kudo Y, Hoshi S, Matsubara M (1994) Nickel-coated hollow-fiber electrode for the electrochemical detection of carbohydrates. Anal Sci 10:835–844CrossRefGoogle Scholar
  88. 88.
    Cataldi RI, Desimoni E, Ricciardi G, Lelj F (1995) Study of the nickel-based chemically modified electrode obtained by electrochemical deposition of an NiII-tetramethyl-dibenzo-tetraaza [14] annulene complex. Redox catalysis of carbohydrates in alkaline solutions. II. Electroanalysis 7:435–441CrossRefGoogle Scholar
  89. 89.
    Casella G, Desimoni E, Salvi AM (1991) Chemically modified electrode for the detection of carbohydrates. Anal Chim Acta 243:61–63CrossRefGoogle Scholar
  90. 90.
    Mu Y, Jia DL, He YY, Miao YQ, Wu HL (2011) Nano nickel oxide modified non-enzymatic glucose sensors with enhanced sensitivity through an electrochemical process strategy at high potential. Biosens Bioelectron 26:2948–2952CrossRefGoogle Scholar
  91. 91.
    Luo ZJ, Yin S, Wang K, Li HM, Wang LG, Xu H, Xia JX (2012) Synthesis of one-dimensional β-Ni(OH)2 nanostructure and their application as nonenzymatic glucose sensors. Mater Chem Phys 132:387–394CrossRefGoogle Scholar
  92. 92.
    Male KB, Hrapovic S, Liu YL, Wang DS, Luong JHT (2004) Electrochemical detection of carbohydrates using copper nanoparticles and carbon nanotubes. Anal Chim Acta 516:35–41CrossRefGoogle Scholar
  93. 93.
    Sun F, Li L, Liu P, Lian YF (2011) Nonenzymatic electrochemical glucose sensor based on novel copper film. Electroanalysis 23:395–401CrossRefGoogle Scholar
  94. 94.
    Wu HX, Cao WM, Li Y, Liu G, Wen Y, Yang HF, Yang SP (2010) In situ growth of copper nanoparticles on multiwalled carbon nanotubes and their application as non-enzymatic glucose sensor materials. Electrochim Acta 55:3734–3740CrossRefGoogle Scholar
  95. 95.
    Yang JA, Zhang WD, Gunasekaran S (2010) An amperometric non-enzymatic glucose sensor by electrodepositing copper nanocubes onto vertically well-aligned multi-walled carbon nanotube arrays. Biosens Bioelectron 26:279–284CrossRefGoogle Scholar
  96. 96.
    Jiang LC, Zhang WD (2010) A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode. Biosens Bioelectron 25:1402–1407CrossRefGoogle Scholar
  97. 97.
    Reitz E, Jia WZ, Gentile M, Wang Y, Lei Y (2008) CuO nanospheres based nonenzymatic glucose sensor. Electroanalysis 20:2482–2486CrossRefGoogle Scholar
  98. 98.
    Wang W, Zhang LL, Tong SF, Li X, Song WB (2009) Effect of sodium borohydride on growth process of controlled flower-like nanostructured Cu2O/CuO films and their hydrophobic property. Biosens Bioelectron 25:708–714CrossRefGoogle Scholar
  99. 99.
    Zhuang ZJ, Su XD, Yuan HY, Sun Q, Xiao D, Choi MMF (2008) An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode. Analyst 133:126–132CrossRefGoogle Scholar
  100. 100.
    Khatib EKM, Hameed RMA (2011) Development of Cu2O/Carbon Vulcan XC-72 as non-enzymatic sensor for glucose determination. Biosens Bioelectron 26:3542–3548CrossRefGoogle Scholar
  101. 101.
    Zhang L, Li H, Ni YH, Li J, Liao KM, Zhao GC (2009) Porous cuprous oxide microcubes for non-enzymatic amperometric hydrogen peroxide and glucose sensing. Electrochem Commun 11:812–815CrossRefGoogle Scholar
  102. 102.
    Li CL, Su Y, Zhang SW, Lv XY, Xia HL, Wang YJ (2010) An improved sensitivity nonenzymatic glucose biosensor based on a CuxO modified electrode. Biosens Bioelectron 26:903–907CrossRefGoogle Scholar
  103. 103.
    Lee H, Yoon SW, Kim EJ, Park J (2007) In-situ growth of copper sulfide nanocrystals on multiwalled carbon nanotubes and their application as novel solar cell and amperometric glucose sensor materials. Nano Lett 7:778–784CrossRefGoogle Scholar
  104. 104.
    Fleischmann M, Korinek K, Pletcher D (1972) The kinetics and mechanism of the oxidation of amines and alcohols at oxide-covered nickel, silver, copper, and cobalt electrodes. J Chem Soc Perkin Trans 2:1396–1402Google Scholar
  105. 105.
    Kano K, Takagi K, Inoue K, Ikeda T, Ueda T (1996) Copper electrodes for stable subpicomole detection of carbohydrates in high-performance liquid chromatography. J Chromatogr A 721:53–57CrossRefGoogle Scholar
  106. 106.
    Kano K, Torimura M, Esaka Y, Goto M, Ueda (1994) T Electrocatalytic oxidation of carbohydrates at copper (II)-modified electrodes and its application to flow-through detection. J Electroanal Chem 372:137–143CrossRefGoogle Scholar
  107. 107.
    Xie Y, Huber CO (1991) Electrocatalysis and amperometric detection using an electrode made of copper oxide and carbon paste. Anal Chem 63:1714–1719CrossRefGoogle Scholar
  108. 108.
    Miller B (1969) Split-ring disk study of the anodic processes at a copper electrode in alkaline solution. J Electrochem Soc 116:1675–1680CrossRefGoogle Scholar
  109. 109.
    Ghanem A, Compton RG, Coles BA, Canals A, Vuorema A, John P, Marken F (2005) Microwave activation of the electro-oxidation of glucose in alkaline media. Phys Chem Chem Phys 7:3552–3559CrossRefGoogle Scholar
  110. 110.
    Yeo IH, Johnson DC (2000) Anodic response of glucose at copper-based alloy electrodes. J Electroanal Chem 484:157–163CrossRefGoogle Scholar
  111. 111.
    Chen DJ, Lu YH, Wang AJ, Feng JJ, Huo TT, Dong WJ (2012) Facile synthesis of ultra-long Cu microdendrites for the electrochemical detection of glucose. J Solid State Electrochem 16:1313–1321CrossRefGoogle Scholar
  112. 112.
    Xu L, Xia JX, Li HM, Li HN, Wang K, Yin S (2011) Ionic liquid assisted solvothermal synthesis of Cu polyhedron-pattern nanostructures and their application as enhanced nanoelectrocatalysts for glucose detection. Eur J Inorg Chem 9:1361–1365Google Scholar
  113. 113.
    Babu TGS, Ramachandran T, Nair B (2010) Single step modification of copper electrode for the highly sensitive and selective non-enzymatic determination of glucose. Microchim Acta 169:49–55Google Scholar
  114. 114.
    Huang T, Lin K, Tung S, Cheng T, Chang I, Hsieh Y, Lee C, Chiu H (2009) Glucose sensing by electrochemically grown copper nanobelt electrode. J Electroanal Chem 636:123–127CrossRefGoogle Scholar
  115. 115.
    Watanabe T, Ivandini TA, Makide Y, Fujishima A, Einaga Y (2006) Selective detection method derived from a controlled diffusion process at metal-modified diamond electrodes. Anal Chem 78:7857–7860CrossRefGoogle Scholar
  116. 116.
    Zhao J, Wang F, Yu J, Hu S (2006) Electro-oxidation of glucose at self-assembled monolayers incorporated by copper particles. Talanta 70:449–454CrossRefGoogle Scholar
  117. 117.
    Tong S, Wang W, Li X, Xu Y, Song W (2009) Electrochemical preparation of copper-based/titanate intercalation electrode material. J Phys Chem C 113:6832–6838CrossRefGoogle Scholar
  118. 118.
    Sattayasamitsathit S, Thavarungkul P, Thammakhet C, Limbut W, Numnuam A, Buranachai C, Kanatharana P (2009) Fabrication of nanoporous copper film for electrochemical detection of glucose. Electroanalysis 21:2371–2377CrossRefGoogle Scholar
  119. 119.
    Chen ZL, Hibbert DB (1997) Simultaneous amperometric and potentiometric detection of sugars, polyols and carboxylic acids in flow systems using copper wire electrodes. J Chromatogr A 766:27–33CrossRefGoogle Scholar
  120. 120.
    Zhang YC, Sub L, Manuzzi D, Monteros HVE, Jia WZ, Huo DQ, Hou CJ, Lei Y (2012) Ultrasensitive and selective non-enzymatic glucose detection using copper Nanowires. Biosens Bioelectron 31:426–432CrossRefGoogle Scholar
  121. 121.
    Cao F, Gong J (2012) Nonenzymatic glucose sensor based on CuO microfibers composed of CuO nanoparticles. Anal Chim Acta 723:39–44CrossRefGoogle Scholar
  122. 122.
    Prathap MUA, Kaur B, Srivastava R (2012) Hydrothermal synthesis of CuO micro-/nanostructures and their applications in the oxidative degradation of methylene blue and non-enzymatic sensing of glucose/H2O2. J Colloid Interface Sci 370:144–154CrossRefGoogle Scholar
  123. 123.
    Zhang P, Zhang L, Zhao GC, Feng F (2012) A highly sensitive nonenzymatic glucose sensor based on CuO nanowires. Microchim Acta 176:411–417CrossRefGoogle Scholar
  124. 124.
    Jafarian M, Forouzandeh F, Danaee I, Gobal F, Mahjani MG (2009) Electrocatalytic oxidation of glucose on Ni and NiCu alloy modified glassy carbon electrode. J Solid State Electrochem 13:1171–1179CrossRefGoogle Scholar
  125. 125.
    Lee YJ, Park JY (2011) A coral-like macroporous gold–platinum hybrid 3D electrode for enzyme-free glucose detection. Sens Actuators B 155:134–139CrossRefGoogle Scholar
  126. 126.
    Qiu R, Zhang XL, Qiao R, Li Y, Kim YI, Kang YS (2007) CuNi dendritic material: synthesis, mechanism discussion, and application as glucose sensor. Chem Mater 19:4174–4180CrossRefGoogle Scholar
  127. 127.
    Guo MQ, Wang R, Xu XH (2011) Electrosynthesis of pinecone-shaped Pt–Pb nanostructures based on the application in glucose detection. Mater Sci Eng C 31:1700–1705CrossRefGoogle Scholar
  128. 128.
    Cao F, Guo S, Ma HY, Shan DC, Yang SX, Gong J (2011) Nickel oxide microfibers immobilized onto electrode by electrospinning and calcination for nonenzymatic glucose sensor and effect of calcination temperature on the performance. Biosens Bioeletron 26:2756–2760CrossRefGoogle Scholar
  129. 129.
    Shim JH, Cha A, Lee YM, Lee CM (2011) Nonenzymatic amperometric glucose sensor based on nanoporous gold/ruthenium electrode. Electroanalysis 23:2057–2062CrossRefGoogle Scholar
  130. 130.
    Gutés A, Carraro C, Maboudian (2011) Nonenzymatic glucose sensing based on deposited palladium nanoparticles on epoxy-silver electrodes. Electrochim Acta 56:5855–5859CrossRefGoogle Scholar
  131. 131.
    Chen XL, Pan HB, Liu HF, Du M (2010) Nonenzymatic glucose sensor based on flower-shaped Au@Pd core–shell nanoparticles–ionic liquids composite film modified glassy carbon electrodes. Electrochim Acta 56:636–643CrossRefGoogle Scholar
  132. 132.
    Shi J, Ci PL, Wang F, Peng H, Yang PX, Wang LW, Ge SL, Wang QJ, Chu PK (2011) Nonenzymatic glucose sensor based on over-oxidized polypyrrole modified Pd/Si microchannel plate electrode. Biosens Bioeletron 26:2579–2584CrossRefGoogle Scholar
  133. 133.
    Huang HY, Chen PY (2010) PdNi- and Pd-coated electrodes prepared by electrodeposition from ionic liquid for nonenzymatic electrochemical determination of ethanol and glucose in alkaline media. Talanta 83:379–385CrossRefGoogle Scholar
  134. 134.
    Hui SC, Zhang J, Chen XJ, Xu HH, Ma DF, Liu YL, Tao BR (2011) Study of an amperometric glucose sensor based on Pd–Ni/SiNW electrode. Sens Actuators B 155:592–597CrossRefGoogle Scholar
  135. 135.
    Mahshid SS, Mahshid S, Dolati A, Ghorbani M, Yang LX, Luo SL, Cai QY (2011) Template-based electrodeposition of Pt/Ni nanowires and its catalytic activity towards glucose oxidation. Electrochim Acta 58:551–555CrossRefGoogle Scholar
  136. 136.
    Holt-Hindle P, Nigro S, Asmussen M, Chen A (2008) Amperometric glucose sensor based on platinum–iridium nanomaterials. Electrochem Commun 10:1438–1441CrossRefGoogle Scholar
  137. 137.
    Wang J, Thomas DF, Chen A (2008) Nonenzymatic electrochemical glucose sensor based on nanoporous PtPb networks. Anal Chem 80:997–1004CrossRefGoogle Scholar
  138. 138.
    Bai Y, Sun Y, Sun C (2008) Pt–Pb nanowire array electrode for enzyme-free glucose detection. Biosens Bioelectron 24:579–585CrossRefGoogle Scholar
  139. 139.
    Morita M, Niwa O, Tou S, Watanabe N (1999) Nickel content dependence of electrochemical behavior of carbohydrates on a titanium–nickel alloy electrode and its application to a liquid chromatography detector. J Chromatogr A 837:17–24CrossRefGoogle Scholar
  140. 140.
    Marioli JM, Kuwana T (1993) Electrochemical detection of carbohydrates at nickel-copper and nickel-chromium-iron alloy electrodes. Electroanalysis 5:11–15CrossRefGoogle Scholar
  141. 141.
    Marioli JM, Luo PF, Kuwana T (1993) Nickel-chromium alloy electrode as a carbohydrate detector for liquid chromatography. Anal Chim Acta 282:571–580CrossRefGoogle Scholar
  142. 142.
    Luo PF, Kuwana T (1994) Nickel-titanium alloy electrode as a sensitive and stable LCEC detector for carbohydrates. Anal Chem 66:2775–2882CrossRefGoogle Scholar
  143. 143.
    Mora I, Marioli JM (2001) Honey carbohydrate analysis by HPLC, with electrochemical detection, using a Ni-Cr alloy electrode. J Liq Chromatogr Relat Technol 24:711–720CrossRefGoogle Scholar
  144. 144.
    Noh HB, Lee KS, Chandra P, Won MS, Shim YB (2012) Application of a Cu-Co alloy dendrite on glucose and hydrogen peroxide sensors. Electrochim Acta 61:36–43CrossRefGoogle Scholar
  145. 145.
    Srinivasan C (2007) Graphene - mother of all graphitic materials. Curr Sci 92:1338–1339Google Scholar
  146. 146.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRefGoogle Scholar
  147. 147.
    Ye JS, Wen Y, Zhang WD, Gan LM, Xu GQ, Sheu FS (2004) Nonenzymatic glucose detection using multi-walled carbon nanotube electrodes. Electrochem Commun 6:66–70CrossRefGoogle Scholar
  148. 148.
    Vlandas A, Kurkina TT, Ahmad A, Kern K, Balasubramanian K (2010) Enzyme-free sugar sensing in microfluidic channels with an affinity-based single-wall carbon nanotube sensor. Anal Chem 82:6090–6097CrossRefGoogle Scholar
  149. 149.
    Wang JX, Sun XW, Cai XP, Lei Y, Song L, Xie SS (2007) Nonenzymatic glucose sensor using freestanding single-wall carbon nanotube films. Electrochem Solid State Lett 10:J58–J60CrossRefGoogle Scholar
  150. 150.
    Yang J, Jiang LC, Zhang WD, Gunasekaran SD (2010) A highly sensitive non-enzymatic glucose sensor based on a simple two-step electrodeposition of cupric oxide (CuO) nanoparticles onto multi-walled carbon nanotube arrays. Talanta 82:5–33Google Scholar
  151. 151.
    Kang XH, Mai ZB, Zou XY, Cai PX, Mo JY (2007) A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode. Anal Biochem 363:43–150Google Scholar
  152. 152.
    Jiang F, Wang S, Lin JJ, Jin HL, Zhang LJ, Huang SM, Wang JC (2011) Aligned SWCNT-copper oxide array as a nonenzymatic electrochemical probe for glucose. Electrochem Commun 13:63–365Google Scholar
  153. 153.
    Yang J, Zhang WD, Gunasekaran SD (2010) An amperometric non-enzymatic glucose sensor by electrodepositing copper nanocubes onto vertically well-aligned multi-walled carbon nanotube arrays. Biosens Bioeletron 6:279–284CrossRefGoogle Scholar
  154. 154.
    Zhu JH, Jiang J, Liu JP, Ding RM, Li YY, Ding H, Feng YM, Wei GM, Huang XT (2011) CNT-network modified Ni nanostructured arrays for high performance non-enzymatic glucose sensors. RSC Advances 1:1020–1025CrossRefGoogle Scholar
  155. 155.
    Zhang XJ, Wang GF, Zhang W, Wei Y, Fang B (2009) Fixure-reduce method for the synthesis of Cu2O/MWCNTs nanocomposites and its application as enzyme-free glucose sensor. Biosens Bioeletron 24:3395–3398CrossRefGoogle Scholar
  156. 156.
    Ryu JG, Kim KH, Kim HS, Hahn HT, Lashmore D (2010) Intense pulsed light induced platinum–gold alloy formation on carbon nanotubes for non-enzymatic glucose detection. Biosens Bioeletron 26:602–607CrossRefGoogle Scholar
  157. 157.
    Liu DY, Luo QM, Zhou FQ (2010) Nonenzymatic glucose sensor based on gold-copper alloy nanoparticles on defect sites of carbon nanotubes by spontaneous reduction. Synth Met 160:745–1748Google Scholar
  158. 158.
    Li LH, Zhang WD (2008) Preparation of carbon nanotubes supported platinum nanoparticles by an organic colloidal process for nonenzymatic glucose sensing. Microchim Acta 163:305–311CrossRefGoogle Scholar
  159. 159.
    Cui HF, Ye JS, Zhang WD, Li CM, Luongb HT, Sheu FS (2007) Selective and sensitive electrochemical detection of glucose in neutral solution using platinum–lead alloy nanoparticle/carbon nanotube nanocomposites. Anal Chim Acta 594:175–183CrossRefGoogle Scholar
  160. 160.
    Rong LQ, Yang C, Qian QY, Xia XH (2007) Study of the nonenzymatic glucose sensor based on highly dispersed Pt nanoparticles supported on carbon nanotubes. Talanta 72:819–824CrossRefGoogle Scholar
  161. 161.
    Meng L, Jin J, Yang G, Lu T, Zhang H, Cai C (2009) Nonenzymatic electrochemical detection of glucose based on palladium-single-walled carbon nanotube hybrid nanostructures. Anal Chem 81:7271–7280Google Scholar
  162. 162.
    Myung Y, Jang DM, Cho YJ, Kim HS, Park J, Kim J, Choi Y, Lee CJ (2009) Nonenzymatic amperometric glucose sensing of platinum, copper sulfide, and tin oxide nanoparticle-carbon nanotube hybrid nanostructures. J Phys Chem C 113:1251–1259CrossRefGoogle Scholar
  163. 163.
    Chen J, Zhang WD, Ye JS (2008) Nonenzymatic electrochemical glucose sensor based on MnO2/MWNTs nanocomposite. Electrochem Commun 10:1268–1271CrossRefGoogle Scholar
  164. 164.
    Li L, Zhang WD, Ye JS (2008) Electrocatalytic oxidation of glucose at carbon nanotubes supported PtRu nanoparticles and its detection. Electroanalysis 20:2212–2216CrossRefGoogle Scholar
  165. 165.
    Cui HF, Ye JS, Zhang WD, Li CM, Luong JHT, Sheu FS (2007) Selective and sensitive electrochemical detection of glucose in neutral solution using platinum–lead alloy nanoparticle/carbon nanotube nanocomposites. Anal Chim Acta 594:175–183CrossRefGoogle Scholar
  166. 166.
    Xiao F, Zhao F, Mei D, Mo Z, Zeng B (2009) Nonenzymatic glucose sensor based on ultrasonic-electrodeposition of bimetallic PtM (M = Ru, Pd and Au) nanoparticles on carbon nanotubes–ionic liquid composite film. Biosens Bioelectron 24:3481–3486CrossRefGoogle Scholar
  167. 167.
    Buratti S, Brunetti B, Mannino S (2008) Amperometric detection of carbohydrates and thiols by using a glassy carbon electrode coated with Co oxide/multi-wall carbon nanotubes catalytic system. Talanta 76:454–457CrossRefGoogle Scholar
  168. 168.
    Chen XM, Cai ZM, Lin ZJ, Jia T, Liu H, Jiang YQ, Chen X (2009) A novel non-enzymatic ECL sensor for glucose using palladium nanoparticles supported on functional carbon nanotubes. Biosens Bioelectron 24:3475–3480CrossRefGoogle Scholar
  169. 169.
    Lu LM, Zhang XB, Shen GL, Yu RQ (2012) Seed-mediated synthesis of copper nanoparticles on carbon nanotubes and their application in nonenzymatic glucose biosensors. Anal Chim Acta 715:99–104CrossRefGoogle Scholar
  170. 170.
    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191CrossRefGoogle Scholar
  171. 171.
    Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907CrossRefGoogle Scholar
  172. 172.
    Kim K, Park HJ, Woo BC, Kim KJ, Kim GT, Yun WS (2008) Electric property evolution of structurally defected 5 multilayer graphene. Nano Lett 8:3092–3096CrossRefGoogle Scholar
  173. 173.
    Bai H, Li C, Shi GQ (2011) Functional composite materials based on chemically converted graphene. Adv Mater 23:1089–1115CrossRefGoogle Scholar
  174. 174.
    Gan T, Hu SS (2011) Electrochemical sensors based on graphene materials. Microchim Acta 175:1–19CrossRefGoogle Scholar
  175. 175.
    Luo J, Jiang SS, Zhang HY, Jiang JQ, Liu XY (2012) A novel non-enzymatic glucose sensor based on Cu nanoparticle modified graphene sheets electrode. Anal Chim Acta 709:47–53CrossRefGoogle Scholar
  176. 176.
    Zhang Y, Xu FG, Sun YJ, Shi Y, Wen ZW, Li Z (2011) Assembly of Ni(OH)2 nanoplates on reduced graphene oxide: a two dimensional nanocomposite for enzyme-free glucose sensing. J Mater Chem 21:16949–16954CrossRefGoogle Scholar
  177. 177.
    Sun JY, Huang KJ, Fan Y, Wu ZW, Li DD (2011) Glassy carbon electrode modified with a film composed of Ni(II), quercetin and graphene for enzyme-less sensing of glucose. Microchim Acta 174:289–294CrossRefGoogle Scholar
  178. 178.
    Kong FY, Li XR, Zhao WW, Xu JJ, Chen HY (2012) Graphene oxide-thionine-Au nanostructure composites: preparation and applications in non-enzymatic glucose sensing. Electrochem Commun 14:59–62CrossRefGoogle Scholar
  179. 179.
    Lu LM, Li HB, Qu FL, Zhang XB, Shen GL, Yu RQ (2011) In situ synthesis of palladium nanoparticle–graphene nanohybrids and their application in nonenzymatic glucose biosensors. Biosens Bioeletron 26:3500–3504CrossRefGoogle Scholar
  180. 180.
    Gao HC, Xiao F, Ching CB, Duan HW (2011) One-step electrochemical synthesis of PtNi nanoparticle-graphene nanocomposites for nonenzymatic amperometric glucose detection. ACS Appl Mater Interfaces 3:3049–3057CrossRefGoogle Scholar
  181. 181.
    Ding RM, Jiang J, Wu F, Gong M, Zhu JH, Huang XT (2011) Cu@C composite nanotube array and its application as an enzyme-free glucose sensor. Nanotechnology 22:1–7Google Scholar
  182. 182.
    Ni YH, Jin L, Zhang L, Hong JM (2010) Honeycomb-like Ni@C composite nanostructures: synthesis, properties and applications in the detection of glucose and the removal of heavy-metal ions. J Mater Chem 20:6430–6436CrossRefGoogle Scholar
  183. 183.
    Zhong X, Yuan R, Chai YQ (2012) In situ spontaneous reduction synthesis of spherical Pd@Cys-C60 nanoparticles and its application in nonenzymatic glucose biosensors. Chem Commun 48:597–599CrossRefGoogle Scholar
  184. 184.
    Singh BJ, Dempsey E, Dickinson C, Laffir F (2012) Inside/outside Pt nanoparticles decoration of functionalised carbon nanofibers (Pt19.2/f-CNF80.8) for sensitive non-enzymatic electrochemical glucose detection. Analyst 137:1639–1648CrossRefGoogle Scholar
  185. 185.
    Bo XJ, Ndamanisha JC, Bai J, Guo LP (2010) Nonenzymatic amperometric sensor of hydrogen peroxide and glucose based on Pt nanoparticles/ordered mesoporous carbon nanocomposite. Talanta 82:85–91CrossRefGoogle Scholar
  186. 186.
    Su C, Zhang C, Lu GQ, Ma CN (2010) Nonenzymatic electrochemical glucose sensor based on Pt nanoparticles/mesoporous carbon matrix. Electroanalysis 22:1901–1905CrossRefGoogle Scholar
  187. 187.
    Li X, Hu AZ, Jiang J, Ding RM, Liu JP, Huang XT (2011) Preparation of nickel oxide and carbon nanosheet array and its application in glucose sensing. J Solid State Chem 184:2738–2743CrossRefGoogle Scholar
  188. 188.
    Colon LA, Dadoo R, Zare RN (1993) Determination of carbohydrates by capillary zone electrophoresis with amperometric detection at a copper microelectrode. Anal Chem 65:476–481CrossRefGoogle Scholar
  189. 189.
    Luo PF, Prabhu SV, Baldwin RP (1990) Constant potential amperometric detection at a copper-based electrode: electrode formation and operation. Anal Chem 62:752–755CrossRefGoogle Scholar
  190. 190.
    Pang H, Lu QY, Wang JJ, Li YC, Gao F (2010) Glucose-assisted synthesis of copper micropuzzles and their application as nonenzymatic glucose sensors. Chem Commun 46:2010–2012CrossRefGoogle Scholar
  191. 191.
    Batchelor-McAuley C, Wildgoose GG, Compton RG, Shao LD, Green MLH (2008) Copper oxide nanoparticle impurities are responsible for the electroanalytical detection of glucose seen using multiwalled carbon nanotubes. Sens Actuators B 132:356–360CrossRefGoogle Scholar
  192. 192.
    Hua L, Chia LS, Goh NK, Tan SN (2000) Amperometric detection of carbohydrates by capillary electrophoresis with a cuprous oxide modified sol–gel carbon composite electrode. Electroanalysis 12:287–291CrossRefGoogle Scholar
  193. 193.
    Ding Y, Liu YX, Parisi J, Zhang LC, Lei Y (2011) A novel NiO–Au hybrid nanobelts based sensor for sensitive and selective glucose detection. Biosens Bioeletron 28:393–398CrossRefGoogle Scholar
  194. 194.
    Wang GF, Wei Y, Zhang W, Zhang XJ, Fang B, Wang L (2010) Enzyme-free amperometric sensing of glucose using Cu-CuO nanowire composites. Microchim Acta 168:87–92CrossRefGoogle Scholar
  195. 195.
    Zhang XJ, Gu AX, Wang GF, Wei Y, Wang W, Wu HQ, Fang B (2010) Fabrication of CuO nanowalls on Cu substrate for a high performance enzyme-free glucose sensor. CrystEngComm 12:1120–1126CrossRefGoogle Scholar
  196. 196.
    Ding Y, Liu YX, Zhang LC, Wang Y, Bellagamba M, Parisi J, Li CM (2011) Sensitive and selective nonenzymatic glucose detection using functional NiO–Pt hybrid nanofibers. Electrochim Acta 58:209–214CrossRefGoogle Scholar
  197. 197.
    Fang B, Gu AX, Wang GF, Wang W, Feng YH, Zhang CH, Zhang XJ (2009) Silver oxide nanowalls grown on cu substrate as an enzymeless glucose sensor. ACS Appl Mater Interfac 1:2829–2834CrossRefGoogle Scholar
  198. 198.
    Wang AJ, Feng JJ, Li ZH, Liao QC, Wang ZZ, Chen JR (2012) Solvothermal synthesis of Cu/Cu2O hollow microspheres for non-enzymatic amperometric glucose sensing. CrystEngComm 14:1289–1295CrossRefGoogle Scholar
  199. 199.
    Wang CX, Yin LW, Zhang LY, Gao R (2010) Ti/TiO2 nanotube array/Ni composite electrodes for nonenzymatic amperometric glucose sensing. J Phys Chem C 114:4408–4413CrossRefGoogle Scholar
  200. 200.
    Casella G, Guascito MR, Cataldi TRI (1999) Electrocatalysis and amperometric detection of alditols and sugars at a gold-nickel composite electrode in anion-exchange chromatography. Anal Chim Acta 398:153–160CrossRefGoogle Scholar
  201. 201.
    Wang J, Zhang WD (2011) Fabrication of CuO nanoplatelets for highly sensitive enzyme-free determination of glucose. Electrochim Acta 56:7510–7516CrossRefGoogle Scholar
  202. 202.
    Illaik A, Taviot-Gueho C, Lavis J, Commereuc S, Verney V, Leroux F (2008) Unusual polystyrene nanocomposite structure using emulsifier-modified layered double hydroxide as nanofiller. Chem Mater 20:4854–4860CrossRefGoogle Scholar
  203. 203.
    Uan JY, Lin JK, Yung YS (2010) Direct growth of oriented Mg–Al layered double hydroxide film on Mg alloy in aqueous HCO3 /CO3 2− solution. J Mater Chem 20:761–766CrossRefGoogle Scholar
  204. 204.
    Fogg AM, Green VM, Harvey HG, O’Hare D (1999) New separation science using shape-selective ion exchange intercalation chemistry. Adv Mater 11:1466–1469CrossRefGoogle Scholar
  205. 205.
    Shi W, He S, Wei M, Evans DG, Duan X (2010) Optical pH sensor with rapid response based on a fluorescein–intercalated layered double hydroxide. Adv Funct Mater 20:3856–3863CrossRefGoogle Scholar
  206. 206.
    Scavetta E, Stipa S, Tonelli D (2007) Electrodeposition of a nickel-based hydrotalcite on Pt nanoparticles for ethanol and glucose sensing. Electrochem Commun 9:2838–2842CrossRefGoogle Scholar
  207. 207.
    Fogg AM, Dunn JS, Shyu SG, Cary DR, O’Hare D (1998) Selective ion-exchange intercalation of isomeric dicarboxylate anions into the layered double hydroxide [LiAl2(OH)6]Cl H2O. Chem Mater 10:351–355CrossRefGoogle Scholar
  208. 208.
    Zhao Y, Wei M, Lu J, Wang ZL, Duan X (2009) Biotemplated hierarchical nanostructure of layered double hydroxides with improved photocatalysis performance. ACS Nano 3:4009–4016CrossRefGoogle Scholar
  209. 209.
    Yan D, Lu J, Ma J, Wei M, Evans DG, Duan X (2011) Reversibly thermochromic, fluorescent ultrathin films with a supramolecular architecture. Angew Chem Int Ed 50:720–723CrossRefGoogle Scholar
  210. 210.
    Ai HH, Huang XT, Zhu ZH, Liu JP, Chi QB, Li YY (2008) A novel glucose sensor based on monodispersed Ni/Al layered double hydroxide and chitosan. Biosens Bioeletron 24:1048–1052CrossRefGoogle Scholar
  211. 211.
    Li MG, Xu SD, Ni F, Wang YL, Chen SH, Wang L (2009) Fast and sensitive non-enzymatic glucose concentration determination using an electroactive anionic clay-modified electrode. Microchim Acta 166:203–208CrossRefGoogle Scholar
  212. 212.
    Li X, Liu JP, Ji XX, Jiang J, Ding RM, Hu YY, Hu AZ, Huang XT (2010) Ni/Al layered double hydroxide nanosheet film grown directly on Ti substrate and its application for a nonenzymatic glucose sensor. Sens Actuators B 147:241–247CrossRefGoogle Scholar
  213. 213.
    Zhao JW, Kong XG, Shi WY, Shao MF, Han JB, Wei M, Evans DG, Duan X (2011) Self-assembly of layered double hydroxide nanosheets/Au nanoparticles ultrathin films for enzyme-free electrocatalysis of glucose. J Mater Chem 21:13926–13933CrossRefGoogle Scholar
  214. 214.
    Luo J, Zhang HY, Jiang SS, Jiang JQ, Liu XY (2012) Facile one-step electrochemical fabrication of a non-enzymatic glucose-selective glassy carbon electrode modified with copper nanoparticles and graphene. Microchim Acta 177:485–490CrossRefGoogle Scholar
  215. 215.
    Lv W, Jin FM, Guo QG, Yang QH, Kang FY (2012) DNA-dispersed graphene/NiO hybrid materials for highly sensitive non-enzymatic glucose sensor. Electrochim Acta 73:129–135CrossRefGoogle Scholar
  216. 216.
    Zhou XM, Nie HG, Yao Z, Dong YQ, Yang Z, Huang SM (2012) Facile synthesis of nanospindle-like Cu2O/straight multi-walled carbon nanotube hybrid nanostructures and their application in enzyme-free glucose sensing. Sens Actuators B 168:1–7CrossRefGoogle Scholar
  217. 217.
    Zhao Y, Zhao JZ, Ma DC, Li YL, Hao XL, Li LZ, Yu CZ, Zhang L, Lu Y, Wang ZC (2012) Synthesis, growth mechanism of different Cu nanostructures and their application for non-enzymatic glucose sensing. Colloid Surface A 409:105–111CrossRefGoogle Scholar
  218. 218.
    Zhang XJ, Wang LL, Ji R, Yu LT, Wang GF (2012) Nonenzymatic glucose sensor based on Cu–Cu2S nanocomposite electrode. Electrochem Comm 24:53–56CrossRefGoogle Scholar
  219. 219.
    Shi HY, Zhang ZX, Wang Y, Zhu QY, Song WB (2011) Bimetallic nano-structured glucose sensing electrode composed of copper atoms deposited on gold nanoparticles. Microchim Acta 173:85–94Google Scholar
  220. 220.
    Zhang WD, Chen J, Jiang LC, Yu YX, Zhang JQ (2010) A highly sensitive nonenzymatic glucose sensor based on NiO-modified multi-walled carbon nanotubes. Microchim Acta 168:259–265Google Scholar
  221. 221.
    Qiao NQ, Zheng JB (2012) Nonenzymatic glucose sensor based on glassy carbon electrode modified with a nanocomposite composed of nickel hydroxide and graphene. Microchim Acta 177:103-109Google Scholar

Copyright information

© Springer-Verlag Wien 2012

Authors and Affiliations

  • Guangfeng Wang
    • 1
    • 2
    • 3
  • Xiuping He
    • 1
    • 2
    • 3
  • Lingling Wang
    • 1
    • 2
    • 3
  • Aixia Gu
    • 1
    • 2
    • 3
  • Yan Huang
    • 1
    • 2
    • 3
  • Bin Fang
    • 1
    • 2
    • 3
  • Baoyou Geng
    • 1
    • 2
    • 3
  • Xiaojun Zhang
    • 1
    • 2
    • 3
  1. 1.College of Chemistry and Materials ScienceAnhui Normal UniversityWuhuPeople’s Republic of China
  2. 2.Key Laboratory for Functional Molecular Solids of the Education Ministry of ChinaWuhuPeople’s Republic of China
  3. 3.Anhui Key Laboratory of Chem-BiosensingAnhui Normal UniversityWuhuPeople’s Republic of China

Personalised recommendations