Microchimica Acta

, Volume 180, Issue 1–2, pp 93–100 | Cite as

Centri-voltammetric determination of glutathione

  • Meliha Çubukçu
  • Fatma Nil Ertaş
  • Ülkü Anık
Original Paper

Abstract

Centri-voltammetry is a method for concentrating an analyte on an electrode with the aid of a centrifuge. It can be performed in the presence or the absence of a solid carrier/support. This is followed by a voltammetric (analytical) scan. Specifically, we describe here an application of the technique to the determination of glutathione (GSH). Silica gel is used as the carrier precipitate to which gold nanoparticles were added in order to improve accumulation as a result of their strong affinity for thiols. Voltammetry was performed with a carbon paste electrode modified with multi-wall carbon nanotubes. The response to GSH is linear in the 25 and 800 μM concentration range (the correlation coefficient being 0.9915) and the relative standard deviation is 3.40 % (at 250 μM of GSH and n = 6). The procedure was successfully applied to the determination of GSH in wine and in synthetic plasma using the standard addition method. The recoveries are 100.8 % and 100.0 %, respectively.

Figure

Centri-voltammetric GSH detection was conducted where silica gel and AuNP were used as carrier materials. As a result, sensitive, robust and practical method was developed for GSH detection.

Keywords

Centri-voltammetry Gold nanoparticle Silica gel GSH Multi-walled carbon nanotube 

References

  1. 1.
    Miao P, Liu L, Nie Y, Li G (2009) An electrochemical sensing strategy for ultrasensitive detection of glutathione by using two gold electrodes and two complementary oligonucleotides. Biosens Bioelectron 24:3347–3351CrossRefGoogle Scholar
  2. 2.
    Zheng ZB, Zhu GZ, Tak H, Joseph E, Eiseman JL, Creighton DJ (2005) N-(2-hydroxypropyl)methacrylamide copolymers of a glutathione (GSH)-activated glyoxalase i inhibitor and DNA alkylating agent: synthesis, reaction kinetics with GSH, and in vitro antitumor activities. Bioconjug Chem 16:598–607CrossRefGoogle Scholar
  3. 3.
    White PC, Lawrence NS, Davis J, Compton RG (2002) Electrochemical determination of thiols: a perspective. Electroanalysis 14:89–98CrossRefGoogle Scholar
  4. 4.
    Lawrence NS, Deo RP, Wang J (2004) Detection of homocysteine at carbon nanotube paste electrodes. Talanta 63:443–449CrossRefGoogle Scholar
  5. 5.
    Refsum H, Smith AD, Ueland PM, Nexo E, Clarke R et al (2004) Facts and recommendations about total homocysteine determinations: an expert opinion. Clin Chem 50:3–32CrossRefGoogle Scholar
  6. 6.
    Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH et al (2002) Plasma homocysteine as a risk factor for dementia and alzheimer’s disease. N Engl J Med 346:476–483CrossRefGoogle Scholar
  7. 7.
    Kleinman WA, Richie JP (2000) Status of glutathione and other thiols and disulfides in human plasma. Biochem Pharmacol 60:19–29CrossRefGoogle Scholar
  8. 8.
    Lavigne V, Pons A, Dubourdieu D (2007) Assay of glutathione in must and wines using capillary electrophoresis and laser-induced fluorescence detection: changes in concentration in dry white wines during alcoholic fermentation and aging. J Chromatogr A 1139:130–135CrossRefGoogle Scholar
  9. 9.
    Friedman M (1994) Improvement in the safety of foods by sulfhydryl-containing amino acids and peptides. A review. J Agric Food Chem 42:3–20CrossRefGoogle Scholar
  10. 10.
    Molnar-Perl I, Friedman M (1990) Inhibiton of browning by sulfur amino acids. 2. Fruit juices and protein-containing foods. J Agric Food Chem 38:1648–1651CrossRefGoogle Scholar
  11. 11.
    Molnar-Perl I, Friedman M (1990) Inhibition of browning by sulfur amino acids. 3. Apples and potatoes. J Agric Food Chem 38:1652–1656CrossRefGoogle Scholar
  12. 12.
    Friedman M (1996) Food browning and its prevention: an overview. J Agric Food Chem 44:631–653CrossRefGoogle Scholar
  13. 13.
    Dubourdieu D, Lavigne-Cru’ege V (2002) 13th International Enology Symposium, Management and Wine Marketing, Montpellier, Proceedings, Trogus H, Gafner J, Sütterlin A (eds) International Association of Enology, Management and Wine Marketing, Breisach Germany, TS Verlag, Neuenberg a. Rhein pp 331–347Google Scholar
  14. 14.
    Lima PR, Santos WJR, Oliveira AB, Goulart MOF, Kubota LT (2008) Electrocatalytic activity of 4-nitrophthalonitrile-modified electrode for the l-glutathione detection. J Pharm Biomed Anal 47:758–764CrossRefGoogle Scholar
  15. 15.
    Cereser C, Guichard J, Drai J, Bannier E, Garcia I et al (2001) Quantitation of reduced and total glutathione at the femtomole level by high-performance liquid chromatography with fluorescence detection: application to red blood cells and cultured fibroblasts. J Chromatogr B: Biomed Sci Appl 752:123–132CrossRefGoogle Scholar
  16. 16.
    Zhang W, Wan F, Zhu W, Xu H, Ye X, Cheng R, Jin LT (2005) Determination of glutathione and glutathione disulfide in hepatocytes by liquid chromatography with an electrode modified with functionalized carbon nanotubes. J Chromatogr B 818:227–232CrossRefGoogle Scholar
  17. 17.
    Shen Z, Wang H, Liang SC, Zhang ZM, Zhang HS (2002) Spectrofluorimetric determination of reduced glutathione in human blood using n-[p-(2-benzothiazoyl)-phenyl]maleimide. Anal Lett 35:2269–2278CrossRefGoogle Scholar
  18. 18.
    Chen XP, Cross RF, Clark AG, Baker WL (1999) Analysis of reduced glutathione using a reaction with 2,41-dichloro-l-(naphthyl-4-ethoxy)-s-triazine (EDTN). Microchim Acta 130:225–231CrossRefGoogle Scholar
  19. 19.
    Besada A, Tadros NB, Gawargious YA (1989) Copper(II)-neocuproine as colour reagent for some biologically active thiols: Spectrophotometric determination of cysteine, penicillamine, glutathione, and 6-mercaptopurine. Microchim Acta 99:143–146CrossRefGoogle Scholar
  20. 20.
    Raggi MA, Nobile L, Giovannini AG (1991) Spectrophotometric determination of glutathione and of its oxidation product in pharmaceutical dosage forms. J Pharm Biomed Anal 9:1037–1040CrossRefGoogle Scholar
  21. 21.
    Chwatko G, Bold E (2000) Determination of cysteine in human plasma by high-performance liquid chromatography and ultraviolet detection after pre-column derivatization with 2-chloro-1-methylpyridinium iodide. Talanta 52:509–515CrossRefGoogle Scholar
  22. 22.
    Calvo-Marzal P, Chumbimuni-Torres KY, Höehr NF, Kubota LT (2006) Determination of glutathione in hemolysed erythrocyte with amperometric sensor based on TTF-TCNQ. Clin Chim Acta 371:152–158CrossRefGoogle Scholar
  23. 23.
    Chee SY, Flegel M, Pumera M (2011) Regulatory peptides desmopressin and glutathione voltammetric determination on nickel oxide modified electrodes. Electrochem Commun 13:963–965CrossRefGoogle Scholar
  24. 24.
    Çubukçu M, Ertaş FN, Anık Ü (2012) Metal/metal oxide micro/nanostructured modified GCPE for GSH detection. Curr Anal Chem 8:351–357CrossRefGoogle Scholar
  25. 25.
    Chen J, He Z, Liu H, Cha C (2006) Electrochemical determination of reduced glutathione (GSH) by applying the powder microelectrode technique. J Electroanal Chem 588:324–330CrossRefGoogle Scholar
  26. 26.
    Terashima C, Rao TN, Sarada BV, Kubota Y, Fujishima A (2003) Direct electrochemical oxidation of disulfides at anodically pretreated boron-doped diamond electrodes. Anal Chem 75:1564–1572CrossRefGoogle Scholar
  27. 27.
    Gong K, Zhang M, Yan Y, Su L, Mao L, Xiong S, Chen Y (2004) Sol–gel-derived ceramic-carbon nanotube nanocomposite electrodes: tunable electrode dimension and potential electrochemical applications. Anal Chem 76:6500–6505CrossRefGoogle Scholar
  28. 28.
    Lim I-Im S, Mott D, Ip W, Njoki PN, Pan Y, Zhou S, Zhong CJ (2008) Interparticle interactions in glutathione mediated assembly of gold nanoparticles. Langmuir 24:8857–8863CrossRefGoogle Scholar
  29. 29.
    Shang L, Yin J, Li J, Jin L, Dong S (2009) Gold nanoparticle-based near-infrared fluorescent detection of biological thiols in human plasma. Biosens Bioelectron 25:269–274CrossRefGoogle Scholar
  30. 30.
    Anık-Kırgöz Ü, Tural H, Ertas FN (2004) A new procedure for voltammetric lead determination based on coprecipitation and centrifugation preconcentration. Electroanalysis 16:765–768CrossRefGoogle Scholar
  31. 31.
    Anık-Kırgöz Ü, Tural H, Ertas FN (2005) Centri-voltammetric study with amberlite XAD-7 resin as a carrier system. Talanta 65:48–53Google Scholar
  32. 32.
    Ürkmez İ, Gökçel İ, Ertaş FN, Tural H (2009) Centrifugation: an efficient technique for preconcentration in anodic stripping voltammetric analysis of mercury using a gold film electrode. Microchim Acta 167:225–230CrossRefGoogle Scholar
  33. 33.
    Anık Ü, Çevik S (2011) Centri-voltammetry for biosensing systems: biocentri-voltammetric xanthine detection. Microchim Acta 174:207–212CrossRefGoogle Scholar
  34. 34.
    Çevik S, Timur S, Anık Ü (2012) Biocentri-voltammetry for the enzyme assay: a model study. RSC Adv 2:4299–4303CrossRefGoogle Scholar
  35. 35.
    Anık Ü, Çubukçu M (2008) Examination of the electroanalytic performance of carbon nanotube (cnt) modified carbon paste electrodes as xanthine biosensor transducers. Turk J Chem 32:711–719Google Scholar
  36. 36.
    Anık Ü, Çevik S (2009) Double-walled carbon nanotube based carbon paste electrode as xanthine biosensor. Microchim Acta 166:209–213CrossRefGoogle Scholar
  37. 37.
    Anık-Kırgöz Ü, Timur S, Odacı D, Perez B, Alegret S, Merkoçi A (2007) Carbon nanotube composite as novel platform for microbial biosensor. Electroanalysis 19:893–898CrossRefGoogle Scholar
  38. 38.
    Timur S, Anık Ü, Odacı D, Gorton L (2007) Development of a microbial biosensor based on carbon nanotube (CNT) modified electrodes. Electrochem Commun 9:1810–1815CrossRefGoogle Scholar
  39. 39.
    Anık Ü, Çevik S, Pumera M (2010) Effect of nitric acid “washing” procedure on electrochemical behavior of carbon nanotubes and glassy carbon μ-particles. Nanoscale Res Lett 5:846–852CrossRefGoogle Scholar
  40. 40.
    Çevik S, Anık Ü (2010) Banana tissue-nanoparticle/nanotube based glassy carbon paste electrode biosensors for catechol Detection. Sens Lett 8:667–671CrossRefGoogle Scholar
  41. 41.
    Merkoçi A, Pumera M, Llopis X, Pérez B, del Valle M, Alegret S (2005) New materials for electrochemical sensing VI: carbon nanotubes. Trends Anal Chem 24:826–838CrossRefGoogle Scholar
  42. 42.
    Pérez B, Pumera M, del Valle M, Merkoçi A, Alegret S (2005) Glucose biosensor based on carbon nanotube epoxy composites. J Nanosci Nanotechnol 5:1694–1698CrossRefGoogle Scholar
  43. 43.
    Fan H-T, Sun T, Xu H-B, Yang Y-J, Tang Q, Sun Y (2011) Removal of arsenic(V) from aqueous solutions using 3-[2-(2-aminoethylamino)ethylamino]propyl-trimethoxysilane functionalized silica gel adsorbent. Desalination 278:238–243CrossRefGoogle Scholar
  44. 44.
    Brasil JL, Martins LC, Ev RR, Dupont J, Dias SLP, Sales JAA, Airoldi C, Lima ÉC (2005) Factorial design for optimization of flow-injection preconcentration procedure for copper(II) determination in natural waters, using 2-aminomethylpyridine grafted silica gel as adsorbent and spectrophotometric detection. Intern J Environ Anal Chem 85:475–491CrossRefGoogle Scholar
  45. 45.
    Puanngam M, Unob F (2008) Preparation and use of chemically modified MCM-41 and silica gel as selective adsorbents for Hg(II) ions. J Hazard Mater 154:578–587CrossRefGoogle Scholar
  46. 46.
    Tso CY, Chao CYH (2012) Activated carbon, silica-gel and calcium chloride composite adsorbents for energy efficient solar adsorption cooling and dehumidification systems. Int J Refrig 35:1626–1638CrossRefGoogle Scholar
  47. 47.
    Huang H, Oike T, Watanabe F, Osaka Y, Kobayashi N, Hasatani M (2010) Development research on composite adsorbents applied in adsorption heat pump. Appl Therm Eng 30:1193–1198CrossRefGoogle Scholar
  48. 48.
    Çoldur F, Andaç M, Işıldak I (2010) Flow-injection potentiometric applications of solid state Li+ selective electrode in biological and pharmaceutical samples. J Solid State Electrochem 14:2241–2249CrossRefGoogle Scholar
  49. 49.
    Çubukçu M, Timur S, Anık Ü (2007) Examination of performance of glassy carbon paste electrode modified with gold nanoparticle and xanthine oxidase for xanthine and hypoxanthine detection. Talanta 74:434–439CrossRefGoogle Scholar
  50. 50.
    Anık Ü, Çubukçu M, Yavuz Y (2012) Nanomaterial-based composite biosensor for glucose detection in alcoholic beverages. Artificial Cells, Blood Substitutes and Biotechnology, (doi:10.3109/10731199.2012.696071, pages 1–5)
  51. 51.
    Raoof JB, Ojani R, Baghayeri M (2009) Simultaneous electrochemical determination of glutathione and tryptophan on a nano-TiO2/ferrocene carboxylic acid modified carbon paste electrode. Sensors Actuators B 143:261–269CrossRefGoogle Scholar
  52. 52.
    Mao L, Yamamoto K (2000) Amperometric biosensor for glutathione based on osmium-polyvinylpyridine gel polymer and glutathione sulfhydryl oxidase. Electroanalysis 12:577–582CrossRefGoogle Scholar
  53. 53.
    Zeng X, Zhanga X, Zhu B, Jia H, Yang W, Li Y, Xue J (2011) A colorimetric and ratiometric fluorescent probe for quantitative detection of GSH at physiologically relevant levels. Sensors Actuators B 159:142–147CrossRefGoogle Scholar
  54. 54.
    Potesil D, Petrlova J, Adama V, Vacek J, Klejdus B, Zehnalek J, Trnkova L, Havel L, Kizek R (2005) Simultaneous femtomole determination of cysteine, reduced and oxidized glutathione, and phytochelatin in maize (Zea mays L.) kernels using high-performance liquid chromatography with electrochemical detection. J Chromatogr A 1084:134–144CrossRefGoogle Scholar
  55. 55.
    Roušar T, Kucěra O, Lotkova H, Červinkova Z (2012) Assessment of reduced glutathione: comparison of an optimized fluorometric assay with enzymatic recycling method. Anal Biochem 423:236–240CrossRefGoogle Scholar
  56. 56.
    Fracassetti D, Lawrence N, Tredoux AGJ, Tirelli A, Nieuwoudt HH, Du Toit WJ (2011) Quantification of glutathione, catechin and caffeic acid in grape juice and wine by a novel ultra-performance liquid chromatography method. Food Chem 128:1136–1142CrossRefGoogle Scholar
  57. 57.
    Chailapakul O, Fujishima A, Tipthara P, Siriwongchai H (2001) Electroanalysis of glutathione and cephalexin using the boron-doped diamond thin-film electrode applied to flow ınjection analysis. Anal Sci 17:419–422Google Scholar

Copyright information

© Springer-Verlag Wien 2012

Authors and Affiliations

  • Meliha Çubukçu
    • 1
    • 2
  • Fatma Nil Ertaş
    • 2
  • Ülkü Anık
    • 1
  1. 1.Faculty of Science, Chemistry DepartmentMugla Sitki Kocman UniversityMuglaTurkey
  2. 2.Faculty of Science, Chemistry DepartmentEge UniversityIzmirTurkey

Personalised recommendations