Microchimica Acta

, Volume 180, Issue 1–2, pp 151–159 | Cite as

Ultrasensitive impedimetric lectin based biosensor for glycoproteins containing sialic acid

  • Tomas Bertok
  • Pavol Gemeiner
  • Milan Mikula
  • Peter Gemeiner
  • Jan TkacEmail author
Original Paper


We report on an ultrasensitive label-free lectin-based impedimetric biosensor for the determination of the sialylated glycoproteins fetuin and asialofetuin. A sialic acid binding agglutinin from Sambucus nigra I was covalently immobilised on a mixed self-assembled monolayer (SAM) consisting of 11-mercaptoundecanoic acid and 6-mercaptohexanol. Poly(vinyl alcohol) was used as a blocking agent. The sensor layer was characterised by atomic force microscopy, electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy. The biosensor exhibits a linear range that spans 7 orders of magnitude for both glycoproteins, with a detection limit as low as 0.33 fM for fetuin and 0.54 fM for asialofetuin. We also show, by making control experiments with oxidised asialofetuin, that the biosensor is capable of quantitatively detecting changes in the fraction of sialic acid on glycoproteins. We conclude that this work lays a solid foundation for future applications of such a biosensor in terms of the diagnosis of diseases such as chronic inflammatory rheumatoid arthritis, genetic disorders and cancer, all of which are associated with aberrant glycosylation of protein biomarkers.


Key aspects of the biosensor: 1) mixed SAM formation, 2) immobilisation of lectin & blocking and 3) a glycoprotein recognition.


Biosensor Electrochemical impedance spectroscopy (EIS) Glycoproteins Label-free detection Self-assembled monolayer (SAM) Sialic acid 



The financial support from the Slovak scientific grant agency VEGA 2/0127/10 and from the Slovak research and development agency APVV 0324-10 and APVV 0282-11 is acknowledged. This contribution/publication was the result of the project implementation: Centre for materials, layers and systems for applications and chemical processes under extreme conditions—stage II, supported by the Research and Development Operational Program funded by the ERDF. The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement n. 311532.

Supplementary material

604_2012_902_MOESM1_ESM.doc (132 kb)
ESM 1 (DOC 132 kb)


  1. 1.
    Cunningham S, Gerlach JQ, Kane M, Joshi L (2010) Glyco-biosensors: recent advances and applications for the detection of free and bound carbohydrates. Analyst 135:2471–2480CrossRefGoogle Scholar
  2. 2.
    Gabius H-J, André S, Jiménez-Barbero J, Romero A, Solís D (2011) From lectin structure to functional glycomics: principles of the sugar code. Trends Biochem Sci 36:298–313CrossRefGoogle Scholar
  3. 3.
    Wu C, Wong C (2011) Chemistry and glycobiology. Chem Commun 47:6201–6207CrossRefGoogle Scholar
  4. 4.
    Katrlík J, Švitel J, Gemeiner P, Kožár T, Tkac J (2010) Glycan and lectin microarrays for glycomics and medicinal applications. Med Res Rev 30:394–418, and references cited thereinGoogle Scholar
  5. 5.
    Gamblin DP, Scanlan EM, Davis BG (2009) Glycoprotein synthesis: an update. Chem Rev 109:131–163CrossRefGoogle Scholar
  6. 6.
    Bertok T, Katrlik J, Gemeiner P, Tkac J (2012) Electrochemical lectin based biosensors as a label-free tool in glycomics. Microchim Acta, in press, doi:  10.1007/s00604-012-0876-4 and references cited therein
  7. 7.
    Kolarich D, Lepenies B, Seeberger HP (2011) Glycomics, glycoproteomics and the immune system. Curr Opin Chem Biol 16:214–220CrossRefGoogle Scholar
  8. 8.
    Pejchal R, Doores KJ, Walker LM, Khayat R, Huang P et al (2011) A potent and broad neutralizing antibody recognizes and penetrates the HIV glycan shield. Science 334:1097–1103CrossRefGoogle Scholar
  9. 9.
    Anthony RM, Kobayashi T, Wermeling F, Ravetch JV (2011) Intravenous gammaglobulin suppresses inflammation through a novel TH2 pathway. Nature 475:110–113CrossRefGoogle Scholar
  10. 10.
    van Bueren JJL, Rispens T, Verploegen S, Van der Palen-Merkus T, Stapel S et al (2011) Anti-galactose-α-1,3-galactose IgE from allergic patients does not bind α-galactosylated glycans on intact therapeutic antibody Fc domains. Nature Biotechnol 29:574–576CrossRefGoogle Scholar
  11. 11.
    Gerlach JQ, Cunningham S, Kane M, Joshi L (2010) Glycobiomimics and glycobiosensors. Biochem Soc Trans 38:1333–1336CrossRefGoogle Scholar
  12. 12.
    Hirabayashi J, Kuno A, Tateno H (2011) Lectin-based structural glycomics: a practical approach to complex glycans. Electrophoresis 32:1118–1128CrossRefGoogle Scholar
  13. 13.
    Mislovičová D, Katrlík J, Paulovičová E, Gemeiner P, Tkac J (2012) Comparison of three distinct ELLA protocols for determination of apparent affinity constants between Con A and glycoproteins. Colloids Surf B: Biointerf 94:163–169CrossRefGoogle Scholar
  14. 14.
    Gemeiner P, Gemeiner P, Mislovičová D, Tkáč J, Švitel J, Pätoprstý V et al (2009) Lectinomics II. A highway to biomedical/clinical diagnostics. Biotechnol Adv 27:1–15, and references cited thereinCrossRefGoogle Scholar
  15. 15.
    Zeng X, Andrade CAS, Oliveira MDL, Sun X-L (2012) Carbohydrate-protein interactions and their biosensing applications. Anal Bioanal Chem 402:3161–3176CrossRefGoogle Scholar
  16. 16.
    Reuel NF, Ahn J-H, Kim J-H, Zhang J, Boghossian AA et al (2011) Transduction of glycan-lectin binding using near-infrared fluorescent single-walled carbon nanotubes for glycan profiling. J Am Chem Soc 133:17923–17933CrossRefGoogle Scholar
  17. 17.
    Batchelor-McAuley C, Dickinson EJF, Rees NV, Toghill KE, Compton RG (2012) New electrochemical methods. Anal Chem 84:669–684CrossRefGoogle Scholar
  18. 18.
    Nagaraj VJ, Aithal S, Eaton S, Bothara M, Wiktor P, Prasad S (2010) Nanomonitor: a miniature electronic biosensor for glycan biomarker detection. Nanomedicine 5:369–378CrossRefGoogle Scholar
  19. 19.
    La Belle JT, Gerlach JQ, Svarovsky S, Joshi L (2007) Label-free real time impedimetric detection of carbohydrate-lectin interactions. Anal Chem 79:6959–6964CrossRefGoogle Scholar
  20. 20.
    Oliveira MDL, Correia MTS, Coelho LCBB, Diniz FB (2008) Electrochemical evaluation of lectin-sugar interaction on gold electrode modified with colloidal gold and polyvinyl butyral. Colloids Surf B: Biointerf 66:13–19CrossRefGoogle Scholar
  21. 21.
    Oliveira MDL, Nogueira ML, Correia MTS, Coelho LCBB, Andrade CAS (2011) Detection of dengue virus serotypes on the surface of gold electrode based on Cratylia mollis lectin affinity. Sens Actuat B: Chem 155:789–795CrossRefGoogle Scholar
  22. 22.
    Oliveira MDL, Andrade CAS, Correia MTS, Coelho LCBB, Singh PR, Zeng X (2011) Impedimetric biosensor based on self-assembled hybrid cystein-gold nanoparticles and CramoLL lectin for bacterial lipopolysaccharide recognition. J Colloid Interf Sci 362:194–201CrossRefGoogle Scholar
  23. 23.
    Etxebarria J, Calvo J, Martin-Lomas M, Reichardt N-C (2012) Lectin-array blotting: Profiling protein glycosylation in complex mixtures. ACS Chem Biol 7:1729–1737Google Scholar
  24. 24.
    Tkac J, Davis JJ (2008) An optimised electrode pre-treatment for SAM formation on polycrystalline gold. J Electroanal Chem 621:117–120CrossRefGoogle Scholar
  25. 25.
    Li Y, Tian Y, Rezai T, Prakash A, Lopez MF, Chan DW, Zhang H (2011) Simultaneous analysis of glycosylated and sialylated PSA reveals differential distribution of glycosylated PSA isoforms in prostate cancer tissues. Anal Chem 83:240–245CrossRefGoogle Scholar
  26. 26.
    Davis JJ, Tkac J, Laurenson S, Ferrigno PK (2007) Peptide aptamers in label-free protein detection I: characterisation of the immobilised scaffold. Anal Chem 79:1089–1096CrossRefGoogle Scholar
  27. 27.
    Davis JJ, Tkac J, Humphreys R, Buxton AT, Lee TA, Ferrigno PK (2009) Peptide aptamers in label free protein detection II: chemical optimisation and detection of specific protein isoforms. Anal Chem 81:3314–3320CrossRefGoogle Scholar
  28. 28.
    Thompson R, Creavin A, O’Connell M, O’Connor B, Clarke P (2011) Optimization of the enzyme-linked lectin assay for enhanced glycoprotein and glycoconjugate analysis. Anal Biochem 413:114–122CrossRefGoogle Scholar
  29. 29.
    Vostiar I, Tkac J, Mandenius CF (2005) Intracellular monitoring of superoxide dismutase expression in an Escherichia coli fed-batch cultivation using on-line disruption with at-line surface Plasmon resonance detection. Anal Biochem 342:152–159CrossRefGoogle Scholar
  30. 30.
    Imami K, Ishihama Y, Terabe S (2008) On-line selective enrichment and ion-pair reaction for structural determination of sulfated glycopeptides by capillary electrophoresis-mass spectrometry. J Chromatogr A 1194:237–242CrossRefGoogle Scholar
  31. 31.
    Hammad LA, Derryberry DZ, Jmeian YR, Mechref Y (2010) Quantification of monosaccharides through multiple-reaction monitoring liquid chromatography/mass spectrometry using an aminopropyl column. Rapid Commun Mass Spectr 24:1565–1574CrossRefGoogle Scholar
  32. 32.
    Safina G, Duran IB, Alasel M, Danielsson B (2011) Surface plasmon resonance for real-time study of lectin-carbohydrate interactions for the differentiation and identification of glycoproteins. Talanta 84:1284–1290CrossRefGoogle Scholar
  33. 33.
    Liu W, Chen Y, Yan M (2008) Surface plasmon resonance imaging of limited glycoprotein samples. Analyst 133:1268–1273CrossRefGoogle Scholar
  34. 34.
    Pedroso MM, Watanabe AM, Roque-Barreira MC, Bueno PR, Faria RC (2008) Quartz crystal microbalance monitoring the real-time binding of lectin with carbohydrate with high and low molecular mass. Microchem J 89:153–158CrossRefGoogle Scholar
  35. 35.
    Choi HW, Takahashi H, Ooya T, Takeuchi T (2011) Label-free detection of glycoproteins using reflectometric interference spectroscopy-based sensing system with upright episcopic illumination. Anal Methods 3:1366–1370CrossRefGoogle Scholar
  36. 36.
    Pilobello KT, Krishnamoorthy L, Slawek D, Mahal LK (2005) Development of a lectin microarray for the rapid analysis of protein glycopatterns. ChemBioChem 6:985–989CrossRefGoogle Scholar
  37. 37.
    Kuno A, Uchiyama N, Koseki-Kuno S, Ebe Y, Takashima S, Yamada M, Hirabayashi J (2005) Evanescent-field fluorescence-assisted lectin microarray: a new strategy for glycan profiling. Nature Methods 2:851–856CrossRefGoogle Scholar
  38. 38.
    Fromell K, Andersson M, Elihn K, Caldwell KD (2005) Nanoparticle decorated surfaces with potential use in glycosylation analysis. Colloids Surf B: Biointerf 46:84–91CrossRefGoogle Scholar
  39. 39.
    Yang C, Xu C, Wang X, Hu X (2012) Quantum-dot-based biosensor for the simultaneous detection of biomarker and therapeutic drug: first steps towards the assay for quantitative pharmacology. Analyst 137:1205–1209CrossRefGoogle Scholar
  40. 40.
    Sugawara K, Yugami A, Kadoya T, Hosaka K (2011) Electrochemically monitoring the binding of concanavalin A and ovoalbumin. Talanta 85:425–429CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2012

Authors and Affiliations

  • Tomas Bertok
    • 1
  • Pavol Gemeiner
    • 2
  • Milan Mikula
    • 2
  • Peter Gemeiner
    • 1
  • Jan Tkac
    • 1
    Email author
  1. 1.Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesBratislavaSlovak Republic
  2. 2.Department of Graphic Arts Technology and Applied Photochemistry, Faculty of Chemical and Food TechnologySlovak University of TechnologyBratislavaSlovak Republic

Personalised recommendations