Microchimica Acta

, Volume 180, Issue 1–2, pp 1–13 | Cite as

Electrochemical lectin based biosensors as a label-free tool in glycomics

  • Tomáš Bertók
  • Jaroslav Katrlík
  • Peter Gemeiner
  • Jan TkacEmail author
Review Article


Glycans and other saccharide moieties attached to proteins and lipids, or present on the surface of a cell, are actively involved in numerous physiological or pathological processes. Their structural flexibility (that is based on the formation of various kinds of linkages between saccharides) is making glycans superb "identity cards". In fact, glycans can form more "words" or "codes" (i.e., unique sequences) from the same number of "letters" (building blocks) than DNA or proteins. Glycans are physicochemically similar and it is not a trivial task to identify their sequence, or—even more challenging—to link a given glycan to a particular physiological or pathological process. Lectins can recognise differences in glycan compositions even in their bound state and therefore are most useful tools in the task to decipher the "glycocode". Thus, lectin-based biosensors working in a label-free mode can effectively complement the current weaponry of analytical tools in glycomics.This review gives an introduction into the area of glycomics and then focuses on the design, analytical performance, and practical utility of lectin-based electrochemical label-free biosensors for the detection of isolated glycoproteins or intact cells.


Scheme of the lectin biosensor operated in a label-free format of analysis for detection of a glycoprotein


Biosensors Glycomics Electrochemical impedance spectroscopy Electrochemistry Label-free detection Lectins 



The financial support from Slovak scientific grant agency VEGA 2/0127/10 and from the Slovak research and development agency APVV 0282-11 is acknowledged. This contribution/publication was the result of the project implementation: Centre for materials, layers and systems for applications and chemical processes under extreme conditions—stage II, supported by the Research and Development Operational Program funded by the ERDF. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 311532.


  1. 1.
    Raman R, Raguram S, Venkataraman G, Paulson JC, Sasisekharan R (2005) Glycomics: an integrated systems approach to structure-function relationships of glycans. Nature Methods 2:817–824. doi: 10.1038/nmeth807 CrossRefGoogle Scholar
  2. 2.
    Varki A, Cummings R, Esko J et al (1999) Essentials of glycobiology. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  3. 3.
    Gabius H-J, Siebert H-C, André S, Jiménez-Barbero J, Rüdiger H (2004) Chemical biology of the sugar code. ChemBioChem 5:740–764. doi: 10.1002/cbic.200300753 CrossRefGoogle Scholar
  4. 4.
    Gabius H-J, André S, Jiménez-Barbero J, Romero A, Solís D (2011) From lectin structure to functional glycomics: principles of the sugar code. Trends Biochem Sci 36:298–313. doi: 10.1016/j.tibs.2011.01.005 CrossRefGoogle Scholar
  5. 5.
    Cummings RD (2009) The repertoire of glycan determinants in the human glycome. Mol BioSystems 5:1087–1104. doi: 10.1039/B907931A CrossRefGoogle Scholar
  6. 6.
    Cunningham S, Gerlach JQ, Kane M, Joshi L (2010) Glyco-biosensors: recent advances and applications for the detection of free and bound carbohydrates. Analyst 135:2471–2480. doi: 10.1039/C0AN00276C CrossRefGoogle Scholar
  7. 7.
    Schmaltz RM, Hanson SR, Wong C-H (2011) Enzymes in the synthesis of glycoconjugates. Chem Rev 111:4259–4307. doi: 10.1021/cr200113w CrossRefGoogle Scholar
  8. 8.
    van Kasteren SI, Kramer HB, Jensen HH, Campbell SJ, Kirkpatrick J, Oldham NJ, Anthony DC, Davis BG (2007) Expanding the diversity of chemical protein modification allows post-translational mimicry. Nature 446:1105–1109. doi: 10.1038/nature05757 CrossRefGoogle Scholar
  9. 9.
    Bertozzi CR, Kiessling LL (2001) Chemical glycobiology. Science 291:2357–2364. doi: 10.1126/science.1059820 CrossRefGoogle Scholar
  10. 10.
    Mislovičová D, Katrlík J, Paulovičová E, Gemeiner P, Tkac J (2012) Comparison of three distinct ELLA protocols for determination of apparent affinity constants between Con A and glycoproteins. Colloids Surf B: Biointerf 94:163–169. doi: 10.1016/j.colsurfb.2012.01.036 CrossRefGoogle Scholar
  11. 11.
    Banerjee DK (2012) N-glycans in cell survival and death: cross-talk between glycosyltransferases. Biochim Biophys Acta Gen Subj, in press. doi: 10.1016/j.bbagen.2012.01.013
  12. 12.
    Mariño K, Bones J, Kattla JJ, Rudd PM (2010) A systematic approach to protein glycosylation analysis: a path through the maze. Nature Chem Biol 6:713–723. doi: 10.1038/nchembio.437 CrossRefGoogle Scholar
  13. 13.
    Harvey DJ, Merry AH, Royle L, Campbell MP, Dwek RA, Rudd PM (2009) Proposal for a standard system for drawing structural diagrams of N- and O-linked carbohydrates and related compounds. Proteomics 9:3796–3801. doi: 10.1002/pmic.200900096 CrossRefGoogle Scholar
  14. 14.
    Lepenies B, Seeberger PH (2010) The promise of glycomics, glycan arrays and carbohydrate-based vaccines. Immunopharm Immunotox 32:196–207. doi: 10.3109/08923970903292663 CrossRefGoogle Scholar
  15. 15.
    Horlacher T, Seeberger PH (2008) Carbohydrate arrays as tools for research and diagnostics. Chem Soc Rev 37:1414–1422. doi: 10.1039/B708016F CrossRefGoogle Scholar
  16. 16.
    Laurent N, Voglmeir J, Flitsch SL (2008) Glycoarrays—tools for determining protein–carbohydrate interactions and glycoenzyme specificity. Chem Commun 4400–4412. doi: 10.1039/B806983M
  17. 17.
    Rillahan CD, Paulson JC (2011) Glycan microarrays for decoding the glycome. Annu Rev Biochem 80:797–823. doi: 10.1146/annurev-biochem-061809-152236 CrossRefGoogle Scholar
  18. 18.
    Rakus JF, Mahal LK (2011) New technologies for glycomic analysis: toward a systematic understanding of the glycome. Annu Rev Anal Chem 4:367–392. doi: 10.1146/annurev-anchem-061010-113951 CrossRefGoogle Scholar
  19. 19.
    Wu C, Wong C (2011) Chemistry and glycobiology. Chem Commun 47:6201–6207. doi: 10.1039/C0CC04359A CrossRefGoogle Scholar
  20. 20.
    Voglmeir J, Sardzík R, Weissenborn MJ, Flitsch SL (2010) Enzymatic glycosylations on arrays. OMICS 14:437–444. doi: 10.1089/omi.2010.0035 CrossRefGoogle Scholar
  21. 21.
    Ghazarian H, Idoni B, Oppenheimer SB (2010) A glycobiology review: carbohydrates, lectins and implications in cancer therapeutics. Acta Histochem 113:236–247. doi: 10.1016/j.acthis.2010.02.004 CrossRefGoogle Scholar
  22. 22.
    Pang P, Chiu PCN, Lee C, Chang L, Panico M, Morris HR et al (2011) Human sperm binding is mediated by the sialyl-Lewisx oligosaccharide on the zona pellucida. Science 333:1761–1764. doi: 10.1126/science.1207438 CrossRefGoogle Scholar
  23. 23.
    Rudd PM, Elliott T, Cresswell P, Wilson IA, Dwek RA (2001) Glycosylation and the immune system. Science 291:2370–2376. doi: 10.1126/science.291.5512.2370 CrossRefGoogle Scholar
  24. 24.
    Helenius A, Aebi M (2001) Intracellular functions of N-linked glycans. Science 291:2364–2369. doi: 10.1126/science.291.5512.2364 CrossRefGoogle Scholar
  25. 25.
    Slawson C, Hart GW (2011) O-GlcNAc signalling: implications for cancer cell biology. Nature Rev Cancer 11:678–684. doi: 10.1038/nrc3114 CrossRefGoogle Scholar
  26. 26.
    Sakaidani Y, Nomura T, Matsuura A, Ito M, Suzuki E, Murakami K, et al. (2011) O-Linked-N-acetylglucosamine on extracellular protein domains mediates epithelial cell–matrix interactions. Nature Commun 2, Art No.: 583. doi:10.1038/ncomms1591
  27. 27.
    Adamczyk B, Tharmalingam T, Rudd PM (2012) Glycans as cancer biomarkers. Biochim Biophys Acta Gen Subj 1820:1347–1353. doi:10.1016/j.bbagen.2011.12.001 Google Scholar
  28. 28.
    Typas A, Banzhaf M, Gross CA, Vollmer W (2012) From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat Rev Microbiol 10:123–136. doi: 10.1038/nrmicro2677 Google Scholar
  29. 29.
    Gamblin DP, Scanlan EM, Davis BG (2009) Glycoprotein synthesis: an update. Chem Rev 109:131–163. doi: 10.1021/cr078291i CrossRefGoogle Scholar
  30. 30.
    Bratosin D, Mazurier J, Debray H, Lecocq M, Boilly B et al (1995) Flow cytofluorimetric analysis of young and senescent human erythrocytes probed with lectins. Evidence that sialic acids control their life span Glycoconj J 12:258–267. doi: 10.1007/BF00731328 Google Scholar
  31. 31.
    Marikovsky Y, Marikovsky M (2002) Clearance of senescent erythrocytes: wheat germ agglutinin distribution on young and old human erythrocytes. Glycoconj J 19:1–4. doi: 10.1023/A:1022513327982 CrossRefGoogle Scholar
  32. 32.
    Vaishnava S, Yamamoto M, Severson KM, Ruhn KA, Yu X, Koren O, Ley R, Wakeland EK, Hooper LV (2011) The antibacterial lectin RegIIIγ promotes the spatial segregation of microbiota and host in the intestine. Science 334:255–258. doi: 10.1126/science.1209791 CrossRefGoogle Scholar
  33. 33.
    Schauer R, Kamerling JP (2011) The chemistry and biology of Trypanosomal trans-sialidases: virulence factors in chagas disease and sleeping sickness. ChemBioChem 12:2246–2264. doi: 10.1002/cbic.201100421 CrossRefGoogle Scholar
  34. 34.
    Song X, Lasanajak Y, Xia B, Heimburg-Molinaro J, Rhea JM, Ju H et al (2011) Shotgun glycomics: a microarray strategy for functional glycomics. Nature Methods 8:85–90. doi: 10.1038/nmeth.1540 CrossRefGoogle Scholar
  35. 35.
    Krishnamoorthy L, Bess JW Jr, Preston AB, Mahal LK et al (2009) HIV-1 and microvesicles from T cells share a common glycome, arguing for a common origin. Nature Chem Biol 5:244–250. doi: 10.1038/nchembio.151 CrossRefGoogle Scholar
  36. 36.
    Hirabayashi J (2009) Glycome 'fingerprints' provide definitive clues to HIV origins. Nature Chem Biol 5:198–199. doi: 10.1038/nchembio0409-198 CrossRefGoogle Scholar
  37. 37.
    Katrlík J, Švitel J, Gemeiner P, Kožár T, Tkac J (2010) Glycan and lectin microarrays for glycomics and medicinal applications. Med Res Rev 30:394–418. doi: 10.1002/med.20195 and references cited thereinGoogle Scholar
  38. 38.
    Dube DH, Bertozzi CR (2005) Glycans in cancer and inflammation—potential for therapeutics and diagnostics. Nature Rev Drug Discov 4:477–488. doi: 10.1038/nrd1751 CrossRefGoogle Scholar
  39. 39.
    Soundararajan V, Zheng S, Patel N, Warnock K, Raman R, Wilson IA, Raguram S, Sasisekharan V, Sasisekharan R (2011) Networks link antigenic and receptor-binding sites of influenza hemagglutinin: Mechanistic insight into fitter strain propagation. Sci Rep 1, Article number:200. doi:10.1038/srep00200
  40. 40.
    Imai M, Watanabe T, Hatta M, Das SC, Ozawa M, Shinya K, Zhong G, Hanson A, Katsura H, Watanabe S, Li C, Kawakami E, Yamada S, Kiso M, Suzuki Y, Maher EA, Neumann G, Kawaoka Y (2012) Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature 486:420-428. doi:10.1038/nature10831 Google Scholar
  41. 41.
    Kuss SK, Best GT, Etheredge CA, Pruijssers AJ, Frierson JM, Hooper LV, Dermody TS, Pfeiffer JK (2011) Intestinal microbiota promote enteric virus replication and systemic pathogenesis. Science 334:249–252. doi: 10.1126/science.1211057 CrossRefGoogle Scholar
  42. 42.
    Doores KJ, Fulton Z, Hong V, Patel MK, Scanlan CN, Wormald MR et al (2010) A nonself sugar mimic of the HIV glycan shield shows enhanced antigenicity. Proc Natl Acad Sci USA 107:17107–17112. doi: 10.1073/pnas.1002717107 CrossRefGoogle Scholar
  43. 43.
    Pejchal R, Doores KJ, Walker LM, Khayat R, Huang P, Wang S et al (2011) A potent and broad neutralizing antibody recognizes and penetrates the HIV glycan shield. Science 334:1097–1103. doi: 10.1126/science.1213256 CrossRefGoogle Scholar
  44. 44.
    McLellan JS, Pancera M, Carrico C, Gorman J, Julien J-P, Khayat R et al (2011) Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9. Nature 480:336–343. doi: 10.1038/nature10696 CrossRefGoogle Scholar
  45. 45.
    Anthony RM, Kobayashi T, Wermeling F, Ravetch JV (2011) Intravenous gammaglobulin suppresses inflammation through a novel TH2 pathway. Nature 475:110–113. doi: 10.1038/nature10134 CrossRefGoogle Scholar
  46. 46.
    Anthony RM, Nimmerjahn F, Ashline DJ, Reinhold VN, Paulson JC, Ravetch JV (2008) Recapitulation of IVIG anti-Inflammatory activity with a recombinant IgG Fc. Science 320:373–376. doi: 10.1126/science.1154315 CrossRefGoogle Scholar
  47. 47.
    Kaneko Y, Nimmerjahn F, Ravetch JV (2006) Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science 313:670–673. doi: 10.1126/science.1129594 CrossRefGoogle Scholar
  48. 48.
    Garcia I, Marradi M, Penades S (2010) Glyconanoparticles: multifunctional nanomaterial for biomedical applications. Nanomedicine 5:777–792. doi: 10.2217/nnm.10.48 CrossRefGoogle Scholar
  49. 49.
    Van Bueren JJL, Rispens T, Verploegen S, Van Der Palen-Merkus T, Stapel S, Workman LJ et al (2011) Anti-galactose-α-1,3-galactose IgE from allergic patients does not bind α-galactosylated glycans on intact therapeutic antibody Fc domains. Nature Biotechnol 29:574–576. doi: doi:10.1038/nbt.1912 CrossRefGoogle Scholar
  50. 50.
    Gemeiner P, Mislovičová D, Tkáč J, Švitel J, Pätoprstý V et al (2009) Lectinomics: II. A highway to biomedical/clinical diagnostics. Biotechnol Adv 27:1–15. doi: 10.1016/j.biotechadv.2008.07.003, and references cited thereinCrossRefGoogle Scholar
  51. 51.
    El-Boubbou K, Huang X (2011) Glyco-nanomaterials: translating insights from the “sugar-code” to biomedical applications. Curr Med Chem 18:2060–2078CrossRefGoogle Scholar
  52. 52.
    Feizi T, Chai W (2004) Oligosaccharide microarrays to decipher the glyco code. Nature Rev Mol Cell Biol 5:582–588. doi: 10.1038/nrm1428 CrossRefGoogle Scholar
  53. 53.
    Nilsson CL (2003) Lectins: proteins that interpret the sugar code. Anal Chem 75:348A–353A. doi: 10.1021/ac031373w CrossRefGoogle Scholar
  54. 54.
    Turnbull JE, Field RA (2007) Emerging glycomics technologies. Nature Chem Biol 3:74–77. doi: 10.1038/nchembio0207-74 CrossRefGoogle Scholar
  55. 55.
    Gerlach JQ, Cunningham S, Kane M, Joshi L (2010) Glycobiomimics and glycobiosensors. Biochem Soc Trans 38:1333–1336. doi: 10.1042/BST0381333 CrossRefGoogle Scholar
  56. 56.
    Alley WR Jr, Vasseur JA, Goetz JA, Svoboda M, Mann BF, Matei DE, Menning N, Hussein A, Mechref Y, Novotny MV (2012) N-linked glycan structures and their expressions change in the blood sera of ovarian cancer patients. J Prot Res 11:2282–2300. doi: 10.1021/pr201070k CrossRefGoogle Scholar
  57. 57.
    Kolarich D, Lepenies B, Seeberger PH (2012) Glycomics, glycoproteomics and the immune system. Curr Opin Chem Biol 16:214–220. doi: 10.1016/j.cbpa.2011.12.006 CrossRefGoogle Scholar
  58. 58.
    Fukui S, Feizi T, Galustian C, Lawson AM, Chai W (2002) Oligosaccharide microarrays for high-throughput detection and specificity assignments of carbohydrate-protein interactions. Nature Biotechnol 20:1011–1017. doi: 10.1038/nbt735 CrossRefGoogle Scholar
  59. 59.
    Love KR, Seeberger PH (2002) Carbohydrate arrays as tools for glycomics. Angew Chem—Int Ed 41:3583–3586. doi: 10.1002/1521-3773(20021004)41:19<3583::AID-ANIE3583>3.0.CO;2-P CrossRefGoogle Scholar
  60. 60.
    Mellet CO, Fernandez JMG (2002) Carbohydrate microarrays. ChemBioChem 3:819–822. doi: 10.1002/1439-7633(20020902)3:9<819::AID-CBIC819>3.0.CO;2-Z CrossRefGoogle Scholar
  61. 61.
    Park S, Shin I (2002) Fabrication of carbohydrate chips for studying protein–carbohydrate interactions. Angew Chem—Int Ed 41:3180–3182. doi: 10.1002/1521-3773(20020902)41:17<3180::AID-ANIE3180>3.0.CO;2-S CrossRefGoogle Scholar
  62. 62.
    Wang D, Liu S, Trummer BJ, Deng C, Wang A (2002) Carbohydrate microarrays for the recognition of cross-reactive molecular markers of microbes and host cells. Nature Biotechnol 20:275–281. doi: 10.1038/nbt0302-275 CrossRefGoogle Scholar
  63. 63.
    Houseman BT, Mrksich M (2002) Carbohydrate arrays for the evaluation of protein binding and enzymatic modification. Chem Biol 9:443–454. doi: 10.1016/S1074-5521(02)00124-2 CrossRefGoogle Scholar
  64. 64.
    Angeloni S, Ridet JL, Kusy N, Gao H, Crevoisier F, Guinchard S et al (2005) Glycoprofiling with micro-arrays of glycoconjugates and lectins. Glycobiol 15:31–41. doi: 10.1093/glycob/cwh143 CrossRefGoogle Scholar
  65. 65.
    Kuno A, Uchiyama N, Koseki-Kuno S, Ebe Y, Takashima S et al (2005) Evanescent-field fluorescence-assisted lectin microarray: a new strategy for glycan profiling. Nature Methods 2:851–856. doi: 10.1038/nmeth803 CrossRefGoogle Scholar
  66. 66.
    Pilobello KT, Krishnamoorthy L, Slawek D, Mahal LK (2005) Development of a lectin microarray for the rapid analysis of protein glycopatterns. ChemBioChem 6:985–989. doi: 10.1002/cbic.200400403 CrossRefGoogle Scholar
  67. 67.
    Zheng T, Peelen D, Smith LM (2005) Lectin arrays for profiling cell surface carbohydrate expression. J Am Chem Soc 127:9982–9983. doi: 10.1021/ja0505550 CrossRefGoogle Scholar
  68. 68.
    Nagl S, Schaeferling M, Wolfbeis OS (2005) Fluorescence analysis in microarray technology. Microchim Acta 151:1–21. doi: 10.1007/s00604-005-0393-9 CrossRefGoogle Scholar
  69. 69.
    Borisov SM, Wolfbeis OS (2008) Optical biosensors. Chem Rev 108:423–461. doi: 10.1021/cr068105t CrossRefGoogle Scholar
  70. 70.
    Sharon N, Lis H (2004) History of lectins: from hemagglutinins to biological recognition molecules. Glycobiol 14:53R–62R. doi: 10.1093/glycob/cwh122 CrossRefGoogle Scholar
  71. 71.
    Lis H, Sharon N (1998) Lectins: carbohydrate-specific proteins that mediate cellular recognition. Chem Rev 98:637–674. doi: 10.1021/cr940413g CrossRefGoogle Scholar
  72. 72.
    Bučko M, Mislovičová D, Nahálka J, Vikartovská A, Šefčovičová J, Katrlík J, Tkáč J, Gemeiner P, Lacík I, Štefuca V, Polakovič M, Rosenberg M, Rebroš M, Šmogrovičová D, Švitel J (2012) Immobilization in biotechnology and biorecognition: from macro- to nanoscale systems. Chem Papers 66:983–998. doi: 10.2478/s11696-012-0226-3 CrossRefGoogle Scholar
  73. 73.
    Thévenot DR, Toth K, Durst RA, Wilson GS (2001) Electrochemical biosensors: recommended definitions and classification. Biosens Bioelectron 16:121–131. doi: 10.1016/S0956-5663(01)00115-4 CrossRefGoogle Scholar
  74. 74.
    Labuda J, Oliveira Brett AM, Evtugyn G, Fojta M, Mascini M, Ozsoz M, Palchetti I, Paleček E, Wang J (2010) Electrochemical nucleic acid-based biosensors: concepts, terms, and methodology (IUPAC Technical Report). Pure Appl Chem 82:1161–1187. doi: 10.1351/PAC-REP-09-08-1 CrossRefGoogle Scholar
  75. 75.
    Jelinek R, Kolusheva S (2004) Carbohydrate biosensors. Chem Rev 104:5987–6015. doi: 10.1021/cr0300284 CrossRefGoogle Scholar
  76. 76.
    Wang J (2012) Electrochemical biosensing based on noble metal nanoparticles. Microchim Acta 177:245–270. doi: 10.1007/s00604-011-0758-1 Google Scholar
  77. 77.
    Katz E, Willner I (2003) Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: routes to impedimetric immunosensors, DNA-sensors, and enzyme biosensors. Electroanal 15:913–947. doi: 10.1002/elan.200390114 CrossRefGoogle Scholar
  78. 78.
    Pejcic B, De Marco R (2006) Impedance spectroscopy: over 35 years of electrochemical sensor optimization. Electrochim Acta 51:6217–6229. doi: 10.1016/j.electacta.2006.04.025 CrossRefGoogle Scholar
  79. 79.
    Daniels JS, Pourmand N (2007) Label-free impedance biosensors: opportunities and challenges. Electroanal 19:1239–1257. doi: 10.1002/elan.200603855 CrossRefGoogle Scholar
  80. 80.
    Lisdat F, Schäfer D (2008) The use of electrochemical impedance spectroscopy for biosensing. Anal Bioanal Chem 391:1555–1567. doi: 10.1007/s00216-008-1970-7 CrossRefGoogle Scholar
  81. 81.
    Sánchez-Pomales G, Zangmeister RA (2011) Recent advances in electrochemical glycobiosensing. Int J Electrochem 2011:Article ID 825790, 11 pages. doi:10.4061/2011/825790
  82. 82.
    Zeng X, Andrade CAS, Oliveira MDL, Sun X-L (2012) Carbohydrate–protein interactions and their biosensing applications. Anal Bioanal Chem 402:3161–3176. doi: 10.1007/s00216-011-5594-y CrossRefGoogle Scholar
  83. 83.
    Dai Z, Kawde A-N, Xiang Y, La Belle JT, Gerlach J, Bhavanandan VP, Joshi L, Wang J (2006) Nanoparticle-based sensing of glycan-lectin interactions. J Am Chem Soc 128:10018–10019. doi: 10.1021/ja063565p CrossRefGoogle Scholar
  84. 84.
    La Belle JT, Gerlach JQ, Svarovsky S, Joshi L (2007) Label-free impedimetric detection of glycan-lectin interactions. Anal Chem 79:6959–6964. doi: 10.1021/ac070651e CrossRefGoogle Scholar
  85. 85.
    Oliveira MDL, Correia MTS, Coelho LCBB, Diniz FB (2008) Electrochemical evaluation of lectin-sugar interaction on gold electrode modified with colloidal gold and polyvinyl butyral. Colloids Surf B: Biointerf 66:13–19. doi: 10.1016/j.colsurfb.2008.05.002 CrossRefGoogle Scholar
  86. 86.
    Oliveira MDL, Correia MTS, Diniz FB (2009) A novel approach to classify serum glycoproteins from patients infected by dengue using electrochemical impedance spectroscopy analysis. Synth Met 159:2162–2164. doi: 10.1016/j.synthmet.2009.09.022 CrossRefGoogle Scholar
  87. 87.
    Oliveira MDL, Correia MTS, Diniz FB (2009) Concanavalin A and polyvinyl butyral use as a potential dengue electrochemical biosensor. Biosens Bioelectron 25:728–732. doi: 10.1016/j.bios.2009.08.009 CrossRefGoogle Scholar
  88. 88.
    Oliveira MDL, Nogueira ML, Correia MTS, Coelho LCBB, Andrade CAS (2011) Detection of dengue virus serotypes on the surface of gold electrode based on Cratylia mollis lectin affinity. Sens Actuat B: Chem 155:789–795. doi: 10.1016/j.snb.2011.01.049 CrossRefGoogle Scholar
  89. 89.
    Andrade CAS, Oliveira MDL, de Melo CP, Coelho LCBB, Correia MTS, Nogueira ML, Singh PR, Zeng X (2011) Diagnosis of dengue infection using a modified gold electrode with hybrid organic–inorganic nanocomposite and Bauhinia monandra lectin. J Colloid Interf Sci 362:517–523. doi: 10.1016/j.jcis.2011.07.013 CrossRefGoogle Scholar
  90. 90.
    Oliveira MDL, Andrade CAS, Correia MTS, Coelho LCBB, Singh PR, Zeng X (2011) Impedimetric biosensor based on self-assembled hybrid cystein-gold nanoparticles and CramoLL lectin for bacterial lipopolysaccharide recognition. J Colloid Interf Sci 362:194–201. doi: 10.1016/j.jcis.2011.06.042 CrossRefGoogle Scholar
  91. 91.
    Nagaraj VJ, Aithal S, Eaton S, Bothara M, Wiktor P, Prasad S (2010) NanoMonitor: a miniature electronic biosensor for glycan biomarker detection. Nanomedicine 5:369–378. doi: 10.2217/nnm.10.11 CrossRefGoogle Scholar
  92. 92.
    Bertók T, Gemeiner P, Mikula M, Gemeiner P, Tkac J (2012) An ultrasensitive electrochemical label-free detection of a glycoprotein by a lectin-based biosensor device, submittedGoogle Scholar
  93. 93.
    Szunerits S, Niedziǒlka-Jönsson J, Boukherroub R, Woisel P, Baumann J-S, Siriwardena A (2010) Label-free detection of lectins on carbohydrate-modified boron-doped diamond surfaces. Anal Chem 82:8203–8210. doi: 10.1021/ac1016387 CrossRefGoogle Scholar
  94. 94.
    Loaiza OA, Lamas-Ardisana PJ, Jubete E, Ochoteco E, Loinaz I, Cabañero G, García I, Penadés S (2011) Nanostructured disposable impedimetric sensors as tools for specific biomolecular interactions: sensitive recognition of concanavalin A. Anal Chem 83:2987–2995. doi: 10.1021/ac103108m CrossRefGoogle Scholar
  95. 95.
    Feizi T, Chai W (2004) Oligosaccharide microarrays to decipher the glyco code. Nat Rev Mol Cell Biol 5:582–588. doi: 10.1038/nrm1428 CrossRefGoogle Scholar
  96. 96.
    Feizi T, Fazio F, Chai W, Wong CH (2003) Carbohydrate microarrays—a new set of technologies at the frontiers of glycomics. Curr Opin Struct Biol 13:637–645. doi: 10.1016/ CrossRefGoogle Scholar
  97. 97.
    Paulson JC, Blixt O, Collins BE (2006) Sweet spots in functional glycomics. Nat Chem Biol 2:238–248. doi: 10.1038/nchembio785 CrossRefGoogle Scholar
  98. 98.
    Culf AS, Cuperlovic-Culf M, Ouellette RJ (2006) Carbohydrate microarrays: survey of fabrication techniques. OMICS 10:289–310. doi: 10.1089/omi.2006.10.289 CrossRefGoogle Scholar
  99. 99.
    Ratner DM, Adams EW, Su J, O’Keefe BR, Mrksich M, Seeberger PH (2004) Probing protein-carbohydrate interactions with microarrays of synthetic oligosaccharides. Chem Bio Chem 5:379–382. doi: 10.1002/cbic.200300804 Google Scholar
  100. 100.
    Jadhav SA (2011) Self-assembled monolayers (SAMs) of carboxylic acids: an overview. Central Eur J Chem 9:369–378. doi: 10.2478/s11532-011-0024-8 CrossRefGoogle Scholar
  101. 101.
    Ding L, Cheng W, Wang X, Ding S, Ju H (2008) Carbohydrate monolayer strategy for electrochemical assay of cell surface carbohydrate. J Am Chem Soc 130:7224–7225. doi: 10.1021/ja801468b CrossRefGoogle Scholar
  102. 102.
    Ding L, Ji Q, Qian R, Cheng W, Huangxian J (2010) Lectin-based nanoprobes functionalized with enzyme for highly sensitive electrochemical monitoring of dynamic carbohydrate expression on living cells. Anal Chem 82:1292–1298. doi: 10.1021/ac902285q CrossRefGoogle Scholar
  103. 103.
    Cheng W, Ding L, Lei J, Ding S, Ju H (2008) Effective cell capture with tetrapeptide-functionalized carbon nanotubes and dual signal amplification for cytosensing and evaluation of cell surface carbohydrate. Anal Chem 80:3867–3872. doi: 10.1021/ac800199t CrossRefGoogle Scholar
  104. 104.
    Xue Y, Ding L, Lei J, Yan F, Ju H (2010) In situ electrochemical imaging of membrane glycan expression on micropatterned adherent single cells. Anal Chem 82:7112–7118. doi: 10.1021/ac101688p CrossRefGoogle Scholar
  105. 105.
    Ding L, Qian R, Xue Y, Cheng W, Ju H (2010) In situ scanometric assay of cell surface carbohydrate by glyconanoparticle-aggregation-regulated silver enhancement. Anal Chem 82:5804–5809. doi: 10.1021/ac100866e CrossRefGoogle Scholar
  106. 106.
    Ertl P, Mikkelsen SR (2001) Electrochemical biosensor array for the identification of microorganisms based on lectin—lipopolysaccharide recognition. Anal Chem 73:4241–4248. doi: 10.1021/ac010324l CrossRefGoogle Scholar
  107. 107.
    Ertl P, Wagner M, Corton E, Mikkelsen SR (2003) Rapid identification of viable Escherichia coli subspecies with an electrochemical screen-printed biosensor array. Biosens Bioelectron 18:907–916. doi: 10.1016/S0956-5663(02)00206-3 CrossRefGoogle Scholar
  108. 108.
    Heiskanen A, Yakovleva J, Spégel C, Taboryski R, Koudelka-Hep M, Emnéus J, Ruzgas T (2004) Amperometric monitoring of redox activity in living yeast cells: comparison of menadione and menadione sodium bisulfite as electron transfer mediators. Electrochem Commun 6:219–224. doi: 10.1016/j.elecom.2003.12.003 CrossRefGoogle Scholar
  109. 109.
    Ding L, Cheng W, Wang X, Xue Y, Lei J, Yin Y, Ju H (2009) A label-free strategy for facile electrochemical analysis of dynamic glycan expression on living cells. Chem Commun 46:7161–7163. doi: 10.1039/b918008g CrossRefGoogle Scholar
  110. 110.
    Xue Y, Bao L, Xiao X, Ding L, Lei J, Ju H (2011) Noncovalent functionalization of carbon nanotubes with lectin for label-free dynamic monitoring of cell-surface glycan expression. Anal Biochem 410:92–97. doi: 10.1016/j.ab.2010.11.019 CrossRefGoogle Scholar
  111. 111.
    Wan Y, Zhang D, Hou B (2009) Monitoring microbial populations of sulfate-reducing bacteria using an impedimetric immunosensor based on agglutination assay. Talanta 80:218–223. doi: 10.1016/j.talanta.2009.06.057 CrossRefGoogle Scholar
  112. 112.
    Gamella M, Campuzano S, Parrado C, Reviejo AJ, Pingarrón JM (2009) Microorganisms recognition and quantification by lectin adsorptive affinity impedance. Talanta 78:1303–1309. doi: 10.1016/j.talanta.2009.01.059 CrossRefGoogle Scholar
  113. 113.
    Xi F, Gao J, Wang J, Wang Z (2011) Discrimination and detection of bacteria with a label-free impedimetric biosensor based on self-assembled lectin monolayer. J Electroanal Chem 656:252–257. doi: 10.1016/j.jelechem.2010.10.025 CrossRefGoogle Scholar
  114. 114.
    Zhang X, Teng Y, Fu Y, Xu L, Zhang S, He B, Wang C, Zhang W (2010) Lectin-based biosensor strategy for electrochemical assay of glycan expression on living cancer cells. Anal Chem 82:9455–9460. doi: 10.1021/ac102132p CrossRefGoogle Scholar
  115. 115.
    Ding C, Qian S, Wang Z, Qu B (2011) Electrochemical cytosensor based on gold nanoparticles for the determination of carbohydrate on cell surface. Anal Biochem 414:84–87. doi: 10.1016/j.ab.2011.03.007 CrossRefGoogle Scholar
  116. 116.
    Zhang J-J, Cheng F-F, Zheng T-T, Zhu J-J (2010) Design and implementation of electrochemical cytosensor for evaluation of cell surface carbohydrate and glycoprotein. Anal Chem 82:3547–3555. doi: 10.1021/ac9026127 CrossRefGoogle Scholar
  117. 117.
    Berggren C, Bjarnason B, Johansson G (2001) Capacitive biosensors. Electroanal 13:173–180. doi: 10.1002/1521-4109(200103)13:3<173::AID-ELAN173>3.0.CO;2-B CrossRefGoogle Scholar
  118. 118.
    Tkac J, Davis JJ (2009) Label-free field effect protein sensing. In Davis JJ (ed) Engineering the bioelectronic interface: applications to analyte biosensing and protein detection. Royal Society of Chemistry, Cambridge, pp 193-224. doi:10.1039/9781847559777-00193
  119. 119.
    Lasia A (1999) Electrochemical impedance spectroscopy and its applications. In: Conway BE, Bockris J, White RE (eds) Modern aspects of electrochemistry. Kluwer Academic/Plenum Publishers, New York, pp 143–248Google Scholar
  120. 120.
    Dijksma M, Kamp B, Hoogvliet JC, van Bennekom WP (2001) Development of an electrochemical immunosensor for direct detection of interferon-γ at the attomolar level. Anal Chem 73:901–907. doi: 10.1021/ac001051h CrossRefGoogle Scholar
  121. 121.
    Vedala H, Chen Y, Cecioni S, Imberty A, Vidal S, Star A (2011) Nanoelectronic detection of lectin-carbohydrate interactions using carbon nanotubes. Nano Lett 11:170–175. doi: 10.1021/nl103286k CrossRefGoogle Scholar
  122. 122.
    Mislovičová D, Gemeiner P, Kozarova A, Kožár T (2009) Lectinomics I. Relevance of exogenous plant lectins in biomedical diagnostics Biologia 64:1–19. doi: 10.2478/s11756-009-0029-3 Google Scholar
  123. 123.
    Kaku H, Peumans WJ, Goldstein IJ (2010) Isolation and characterization of a second lectin (SNA-II) present in elderberry (Sambucus nigra L) bark. Arch Biochem Biophys 277:255–262. doi: 10.1016/0003-9861(90)90576-K CrossRefGoogle Scholar
  124. 124.
    Rahaie M, Kazemi SS (2010) Lectin-based biosensors: as powerful tools in bioanalytical applications. Biotechnol 9:428–443. doi: 10.3923/biotech.2010.428.443 CrossRefGoogle Scholar
  125. 125.
    Bertók T, Šefčovičová J, Gemeiner P, Tkáč J (2012) Lectinomics: a tool in clinical diagnostics. Chem Listy 106:20–26Google Scholar
  126. 126.
  127. 127.

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Tomáš Bertók
    • 1
  • Jaroslav Katrlík
    • 1
  • Peter Gemeiner
    • 1
  • Jan Tkac
    • 1
    Email author
  1. 1.Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesBratislavaSlovak Republic

Personalised recommendations