Microchimica Acta

, Volume 179, Issue 1–2, pp 1–16 | Cite as

Carbon nanotubes and graphene in analytical sciences

Review Article

Abstract

Nanosized carbon materials are offering great opportunities in various areas of nanotechnology. Carbon nanotubes and graphene, due to their unique mechanical, electronic, chemical, optical and electrochemical properties, represent the most interesting building blocks in various applications where analytical chemistry is of special importance. The possibility of conjugating carbon nanomaterials with biomolecules has received particular attention with respect to the design of chemical sensors and biosensors. This review describes the trends in this field as reported in the last 6 years in (bio)analytical chemistry in general, and in biosensing in particular.

Figure

Carbon nanotubes and graphene in analytical applications

Keywords

Carbon nanotubes Graphene Analytical chemistry Biosensors 

References

  1. 1.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRefGoogle Scholar
  2. 2.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV (2012) Electric field effect in atomically thin carbon films. Science 666:666–669Google Scholar
  3. 3.
    Yang W, Ratinac KR, Ringer SP, Thordarson P, Gooding JJ, Braet F (2010) Carbon nanomaterials in biosensors: should you use nanotubes or graphene? Angew Chem Int Ed 49:2114–2138CrossRefGoogle Scholar
  4. 4.
    Merkoçi A (2005) Carbon nanotubes in analytical sciences. Microchim Acta 152:157–174Google Scholar
  5. 5.
    Biswas C, Lee YH (2011) Graphene versus carbon nanotubes in electronic devices. Adv Funct Mater 21:3806–3826CrossRefGoogle Scholar
  6. 6.
    Wang Z, Zhou X, Zhang J, Boey F, Zhang H (2009) Direct electrochemical reduction of single-Layer graphene oxide and subsequent functionalization with glucose oxidase. JPhys Chem C 113:14071–14075CrossRefGoogle Scholar
  7. 7.
    Peng X-Y, Liu X-X, Diamond D, Lau KT (2011) Synthesis of electrochemically-reduced graphene oxide film with controllable size and thickness and its use in supercapacitor. Carbon 49:3488–3496CrossRefGoogle Scholar
  8. 8.
    Guo H-L, Wang X-F, Qian Q-Y, Wang F-B, Xia X-H (2009) A green approach to the synthesis of graphene nanosheets. ACS Nano 3:2653–2659CrossRefGoogle Scholar
  9. 9.
    Dilimon VS, Sampath S (2011) Electrochemical preparation of few layer-graphene nanosheets via reduction of oriented exfoliated graphene oxide thin films in acetamide–urea–ammonium nitrate melt under ambient conditions. Thin Solid Films 519:2323–2327CrossRefGoogle Scholar
  10. 10.
    Ramesha GK, Sampath S (2009) Electrochemical reduction of oriented graphene oxide films: an in situ raman spectroelectrochemical study. J Phys Chem C 113:7985–7989CrossRefGoogle Scholar
  11. 11.
    Wang J, Yang S, Guo D, Yu P, Li D, Ye J, Mao L (2009) Comparative studies on electrochemical activity of graphene nanosheets and carbon nanotubes. Electrochem Commun 11:1892–1895CrossRefGoogle Scholar
  12. 12.
    Artiles MS, Rout CS, Fisher TS (2011) Graphene-based hybrid materials and devices for biosensing. Adv Drug Deliv Rev 63:1352–1360CrossRefGoogle Scholar
  13. 13.
    Pérez López B, Merkoçi A (2009) Improvement of the electrochemical detection of catechol by the use of a carbon nanotube based biosensor. Analyst 134:60–64CrossRefGoogle Scholar
  14. 14.
    Chen Y, Vedala H, Kotchey GP, Audfray A, Cecioni S, Imberty A, Sébastien V, Star A (2012) Electronic detection of lectins using nanostructures: graphene versus carbon nanotubes. ACS Nano 6:760–770CrossRefGoogle Scholar
  15. 15.
    Loo AH, Bonanni A, Pumera M (2012) Impedimetric thrombin aptasensor based on chemically modified graphenes. Nanoscale 4:143–147CrossRefGoogle Scholar
  16. 16.
    Pumera M (2011) Graphene in biosensing. Mater Today 14:308–315CrossRefGoogle Scholar
  17. 17.
    Kuila T, Bose S, Khanra P, Kumar A (2011) Recent advances in graphene-based biosensors. Biosensors Bioelectron 26:4637–4648CrossRefGoogle Scholar
  18. 18.
    Angione MD, Pilolli R, Cotrone S, Magliulo M, Mallardi A, Palazzo G, Sabbatini L, Fine D, Dodabalapur A, Cioffi N, Torsi L (2011) Carbon based materials for electronic bio-sensing. Mater Today 14:424–433CrossRefGoogle Scholar
  19. 19.
    Guix M, Pérez-López B, Sahin M, Roldán M, Ambrosi A, Merkoçi A (2010) Structural characterization by confocal laser scanning microscopy and electrochemical study of multi-walled carbon nanotube tyrosinase matrix for phenol detection. Analyst 135:1918–1925CrossRefGoogle Scholar
  20. 20.
    Pérez-López B, Merkoçi A (2011) Magnetic nanoparticles modified with carbon nanotubes for electrocatalytic magnetoswitchable biosensing applications. Adv Funct Mater 21:255–260CrossRefGoogle Scholar
  21. 21.
    Morales-Narváez E, Pérez-López B, Pires LB, Merkoçi A (2012) Simple förster resonance energy transfer evidence for the ultrahigh quantum dot quenching efficiency by graphene oxide compared to other carbon structures. Carbon 50:2987–2993CrossRefGoogle Scholar
  22. 22.
    Wang BX, Wang C, Qu K, Song Y, Ren J, Miyoshi D, Sugimoto N, Xiaogang Q (2010) Ultrasensitive and selective detection of a prognostic indicator in early-stage cancer using graphene oxide and carbon nanotubes. Adv Funct Mater 20:3967–3971CrossRefGoogle Scholar
  23. 23.
    Jiang H (2011) Chemical preparation of graphene-based nanomaterials and their applications in chemical and biological sensors. Adv Mater 7:2413–2427Google Scholar
  24. 24.
    Wang K, Liu Q, Dai L, Yan J, Ju C, Qiu B, Wu X (2011) A highly sensitive and rapid organophosphate biosensor based on enhancement of CdS – decorated graphene nanocomposite. Anal Chim Acta 695:84–88CrossRefGoogle Scholar
  25. 25.
    Subrahmanyam KS, Vivekchand SRC, Govindaraj RCNR (2008) A study of graphenes prepared by different methods: characterization, properties and solubilization. J Mater Chem 18:1517–1523CrossRefGoogle Scholar
  26. 26.
    Bahun GJ, Wang C, Adronov A (2006) Solubilizing single-walled carbon nanotubes with pyrene-functionalized block copolymers. J Polym Sci Part A: Polym Chem 44:1941–1951CrossRefGoogle Scholar
  27. 27.
    Vashist SK, Zheng D, Al-Rubeaan K, Luong JHT, Sheu F-S (2011) Advances in carbon nanotube based electrochemical sensors for bioanalytical applications. Biotech Adv 29:169–188CrossRefGoogle Scholar
  28. 28.
    Jacobs CB, Peairs MJ, Venton BJ (2010) Review: carbon nanotube based electrochemical sensors for biomolecules. Anal Chim Acta 662:105–127CrossRefGoogle Scholar
  29. 29.
    Wang J, Lin Y (2008) Functionalized carbon nanotubes and nanofibers for biosensing applications. Trends Anal Chem 27:619–626CrossRefGoogle Scholar
  30. 30.
    Pérez-López B, Sola J, Alegret S, Merkoçi A (2008) A carbon nanotube PVC based matrix modified with glutaraldehyde suitable for biosensor applications. Electroanal 20:603–610CrossRefGoogle Scholar
  31. 31.
    Reuel NF, Ahn J-H, Kim J-H, Zhang J, Boghossian A, Mahal LK, Strano MS (2011) Transduction of glycan-lectin binding using near-infrared fluorescent single-walled carbon nanotubes for glycan profiling. J Am Chem Soc 133:17923–17933CrossRefGoogle Scholar
  32. 32.
    Baldrich E, Muñoz FX (2011) Carbon nanotube wiring: a tool for straightforward electrochemical biosensing at magnetic particles. Anal Chem 83:9244–9250CrossRefGoogle Scholar
  33. 33.
    Bonanni A, Pividori MI, Del Valle M (2010) Impedimetric detection of influenza A (H1N1) DNA sequence using carbon nanotubes platform and gold nanoparticles amplification. Analyst 135:1765–1772CrossRefGoogle Scholar
  34. 34.
    Crespo GA, Macho S, Rius FX (2008) Ion-selective electrodes using carbon nanotubes as ion-to-electron transducers. Anal Chem 80:1316–1322CrossRefGoogle Scholar
  35. 35.
    De-los-Santos-Álvarez N, Lobo-Castañón MJ, Miranda-Ordieres AJ, Tuñón-Blanco P (2008) Aptamers as recognition elements for label-free analytical devices. Trends Anal Chem 27:437–446CrossRefGoogle Scholar
  36. 36.
    Bai L, Yuan R, Chai Y, Zhuo Y, Yuan Y, Wang Y (2012) Simultaneous electrochemical detection of multiple analytes based on dual signal amplification of single-walled carbon nanotubes and multi-labeled graphene sheets. Biomater 33:1090–1096CrossRefGoogle Scholar
  37. 37.
    Agüí L, Yáñez-Sedeño P, Pingarrón JM (2008) Role of carbon nanotubes in electroanalytical chemistry: a review. Anal Chim Acta 622:11–47CrossRefGoogle Scholar
  38. 38.
    Vega D, Agüí L, González-Cortés A, Yáñez-Sedeño P, Pingarrón JM (2007) Voltammetry and amperometric detection of tetracyclines at multi-wall carbon nanotube modified electrodes. Anal BioanalChem 389:951–958CrossRefGoogle Scholar
  39. 39.
    Zhao J, Zhang Y, Wu K, Chen J, Zhou Y (2011) Electrochemical sensor for hazardous food colourant quinoline yellow based on carbon nanotube-modified electrode. Food Chem 128:569–572CrossRefGoogle Scholar
  40. 40.
    Viñas P, López-García I, Bravo MB, Hernández-Córdoba M (2011) Multi-walled carbon nanotubes as solid-phase extraction adsorbents for the speciation of cobalamins in seafoods by liquid chromatography. Anal BioanalChem 401:1393–1399CrossRefGoogle Scholar
  41. 41.
    André C, Aljhani R, Gharbi T, Guillaume YC (2011) Incorporation of carbon nanotubes in a silica HPLC column to enhance the chromatographic separation of peptides: theoretical and practical aspects. J SepScience 34:1221–1227Google Scholar
  42. 42.
    Ravelo-Pérez LM, Herrera-Herrera AV, Hernández-Borges J, Rodríguez-Delgado MA (2010) Carbon nanotubes: solid-phase extraction. J Chromatogr A 1217:2618–2641CrossRefGoogle Scholar
  43. 43.
    Cui Y, Liu S, Hu Z-J, Liu X-H, Gao H-W (2011) Solid-phase extraction of lead(II) ions using multiwalled carbon nanotubes grafted with tris(2-aminoethyl)amine. Microchim Acta 174:107–113CrossRefGoogle Scholar
  44. 44.
    Safavi A, Maleki N, Doroodmand MM (2010) Single-walled carbon nanotubes as stationary phase in gas chromatographic separation and determination of argon, carbon dioxide and hydrogen. Anal Chim Acta 675:207–212CrossRefGoogle Scholar
  45. 45.
    Wu R-G, Yang C-S, Wang P-C, Tseng F-G (2009) Nanostructured pillars based on vertically aligned carbon nanotubes as the stationary phase in micro-CEC. Electrophoresis 30:2025–2031CrossRefGoogle Scholar
  46. 46.
    Sombra L, Moliner-Martínez Y, Cárdenas S, Valcárcel M (2008) Carboxylic multi-walled carbon nanotubes as immobilized stationary phase in capillary electrochromatography. Electrophoresis 29:3850–3857CrossRefGoogle Scholar
  47. 47.
    Speltini A, Merli D, Dondi D, Paganini G, Profumo A (2012) Improving selectivity in gas chromatography by using chemically modified multi-walled carbon nanotubes as stationary phase. Anal BioanalChem 403:1157–1165CrossRefGoogle Scholar
  48. 48.
    Sae-Khow O, Mitra S (2009) Carbon nanotubes as the sorbent for integrating micro-solid phase extraction within the needle of a syringe. J Chromatogr A 1216:2270–2274CrossRefGoogle Scholar
  49. 49.
    Chen S, Zhu L, Lu D, Cheng X, Zhou X (2010) Separation and chromium speciation by single-wall carbon nanotubes microcolumn and inductively coupled plasma mass spectrometry. Microchim Acta 169:123–128CrossRefGoogle Scholar
  50. 50.
    Rastkari N, Ahmadkhaniha R, Yunesian M (2009) Single-walled carbon nanotubes as an effective adsorbent in solid-phase microextraction of low level methyl tert-butyl ether, ethyl tert-butyl ether and methyl tert-amyl ether from human urine. J Chromatogr B 877:1568–1574CrossRefGoogle Scholar
  51. 51.
    Upadhyayula VKK, Deng S, Mitchell MC, Smith GB (2009) Application of carbon nanotube technology for removal of contaminants in drinking water: A review. Sci Total Environ 408:1–13CrossRefGoogle Scholar
  52. 52.
    Huang X, Chang X, He Q, Cui Y, Zhai Y, Jiang N (2008) Tris(2-aminoethyl) amine functionalized silica gel for solid-phase extraction and preconcentration of Cr(III), Cd(II) and Pb(II) from waters. J Hazard Mater 157:154–160CrossRefGoogle Scholar
  53. 53.
    Yang J, Deng S, Lei J, Ju H, Gunasekaran S (2011) Electrochemical synthesis of reduced graphene sheet-AuPd alloy nanoparticle composites for enzymatic biosensing. Biosens Bioelectron 29:159–166CrossRefGoogle Scholar
  54. 54.
    Wang C, Li J, Amatore C, Chen Y, Jiang H, Wang X-M (2011) Gold nanoclusters and graphene nanocomposites for drug delivery and imaging of cancer cells. Angew Chem Int Ed 50:11644–11648CrossRefGoogle Scholar
  55. 55.
    Kong F-Y, Li X-R, Zhao W-W, Xu J-J, Chen H-Y (2012) Graphene oxide–thionine–Au nanostructure composites: preparation and applications in non-enzymatic glucose sensing. Electrochem Commun 14:59–62CrossRefGoogle Scholar
  56. 56.
    Fan Y, Liu J-H, Yang C-P, Yu M, Liu P (2011) Graphene–polyaniline composite film modified electrode for voltammetric determination of 4-aminophenol. Sens Actuators B 157:669–674CrossRefGoogle Scholar
  57. 57.
    Pumera M, Ambrosi A, Bonanni A, Chng ELK, Poh HL (2010) Graphene for electrochemical sensing and biosensing. TrAC Trends in Anal Chem 29:954–965CrossRefGoogle Scholar
  58. 58.
    Chen J-L, Yan X-P, Meng K, Wang S-F (2011) Graphene oxide based photoinduced charge transfer label-free near-infrared fluorescent biosensor for dopamine. Anal Chem 83:8787–8793CrossRefGoogle Scholar
  59. 59.
    Alwarappan S, Erdem A, Liu C, Li C-Z (2009) Probing the electrochemical properties of graphene nanosheets for biosensing applications. J Phys Chem C 113:8853–8857CrossRefGoogle Scholar
  60. 60.
    Choi BG, Im J, Kim HS, Park H (2011) Flow-injection amperometric glucose biosensors based on graphene/Nafion hybrid electrodes. Electrochim Acta 56:9721–9726CrossRefGoogle Scholar
  61. 61.
    Roy S, Soin N, Bajpai R, Misra DS, McLaughlin JA, Roy SS (2011) Graphene oxide for electrochemical sensing applications. J Mater Chem 21:14725–14731CrossRefGoogle Scholar
  62. 62.
    Chen D, Tang L, Li J (2010) Graphene-based materials in electrochemistry. Chem Soc Rev 39:3157–3180CrossRefGoogle Scholar
  63. 63.
    Liu M, Zhao H, Quan X, Chen S, Fan X (2010) Distance-independent quenching of quantum dots by nanoscale-graphene in self-assembled sandwich immunoassay. Chem Commun 46:7909–7911CrossRefGoogle Scholar
  64. 64.
    Mohanty N, Berry V (2008) Resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett 8:4469–4476CrossRefGoogle Scholar
  65. 65.
    Bonanni A, Pumera M (2011) Graphene platform for Hairpin-DNA-based impedimetric genosensing. ACS Nano 5:2356–2361CrossRefGoogle Scholar
  66. 66.
    Giovanni M, Bonanni A, Pumera M (2012) Detection of DNA hybridization on chemically modified graphene platforms. Analyst 137:580–583CrossRefGoogle Scholar
  67. 67.
    Stergiou DV, Diamanti EK, Gournis D, Prodromidis MI (2010) Comparative study of different types of graphenes as electrocatalysts for ascorbic acid. Electrochem Commun 12:1307–1309CrossRefGoogle Scholar
  68. 68.
    Lu J, Do I, Drzal LT, Worden RM, Lee I (2008) Nanometal-decorated exfoliated graphite nanoplatelet based glucose biosensors with high sensitivity and fast response. ACS Nano 2:1825–1832CrossRefGoogle Scholar
  69. 69.
    Shan C, Yang H, Song J, Han D, Ivaska A, Niu L (2009) Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal Chem 81:2378–2382CrossRefGoogle Scholar
  70. 70.
    Song W, Li D-W, Li Y-T, Li Y, Long Y-T (2011) Disposable biosensor based on graphene oxide conjugated with tyrosinase assembled gold nanoparticles. Biosens Bioelectron 26:3181–3186CrossRefGoogle Scholar
  71. 71.
    Chua CK, Ambrosi A, Pumera M (2011) Graphene based nanomaterials as electrochemical detectors in Lab-on-a-chip devices. Electrochem Commun 13:517–519CrossRefGoogle Scholar
  72. 72.
    Morales-Narváez E, Merkoçi A (2012) Graphene oxide as an optical biosensing platform. Adv Mater 25:3298–3308CrossRefGoogle Scholar
  73. 73.
    Jung JH, Cheon DS, Liu F, Lee KB, Seo TS (2010) A graphene oxide based immuno-biosensor for pathogen detection. Angew Chem Int Ed 49:5708–5711CrossRefGoogle Scholar
  74. 74.
    Chen Z, Berciaud S, Nuckolls C, Heinz TF, Brus LE (2010) Energy transfer from individual semiconductor nanocrystals to graphene. ACS Nano 4:2964–2968CrossRefGoogle Scholar
  75. 75.
    Kim J, Cote LJ, Kim F, Huang J (2010) Visualizing graphene based sheets by fluorescence quenching microscopy. J Am ChemSoc 132:260–267CrossRefGoogle Scholar
  76. 76.
    Lu C-H, Yang H-H, Zhu C-L, Chen X, Chen G-N (2009) A graphene platform for sensing biomolecules. Angew Chem In Ed 48:4785–4787CrossRefGoogle Scholar
  77. 77.
    Chang H, Tang L, Wang Y, Jiang J, Li J (2010) Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection. Anal Chem 82:2341–2346CrossRefGoogle Scholar
  78. 78.
    Yang R, Tang Z, Yan J, Kang H, Kim Y, Zhu Z, Tan W (2008) Noncovalent assembly of carbon nanotubes and single-stranded DNA: an effective sensing platform for probing biomolecular interactions. Anal Chem 80:7408–7413CrossRefGoogle Scholar
  79. 79.
    Liu Q, Shi J, Zeng L, Wang T, Cai Y, Jiang G (2011) Evaluation of graphene as an advantageous adsorbent for solid-phase extraction with chlorophenols as model analytes. J Chromatogr A 1218:197–204CrossRefGoogle Scholar
  80. 80.
    Xu L, Feng J, Li J, Liu X, Jiang S (2012) Graphene oxide bonded fused-silica fiber for solid-phase microextraction-gas chromatography of polycyclic aromatic hydrocarbons in water. J Sep Sci 35:93–100CrossRefGoogle Scholar
  81. 81.
    Huang K-J, Yu S, Li J, Wu Z-W, Wei C-Y (2011) Extraction of neurotransmitters from rat brain using graphene as a solid-phase sorbent, and their fluorescent detection by HPLC. Microchim Acta 176:327–335Google Scholar
  82. 82.
    Gulbakan B, Yasun E, Shukoor MI, Zhu Z, You M, Tan X, Sanchez H, Powell DH, Dai H, Tan W (2010) A dual platform for selective analyte enrichment and ionization in mass spectrometry using aptamer-conjugated graphene oxide. J Am Chem Soc 132:17408–17410CrossRefGoogle Scholar
  83. 83.
    Tang LAL, Wang J, Loh KP (2010) Graphene-based SELDI probe with ultrahigh extraction and sensitivity for DNA oligomer. J Am Chem Soc 132:10976–10977CrossRefGoogle Scholar
  84. 84.
    Dong X, Cheng J, Li J, Wang Y (2010) Graphene as a novel matrix for the analysis of small molecules by MALDI-TOF MS. Anal Chem 82:6208–6214CrossRefGoogle Scholar
  85. 85.
    Wang Y, Gao S, Zang X, Li J, Ma J (2012) Graphene-based solid-phase extraction combined with flame atomic absorption spectrometry for a sensitive determination of trace amounts of lead in environmental water and vegetable samples. Anal Chim Acta 716:112–118CrossRefGoogle Scholar
  86. 86.
    Wang YK, Zang XH, Gao ST, Li JC, Ma JJ (2012) Application of graphene as a sorbent for the preconcentration and determination of trace amounts of lead in water samples prior to flame atomic absorption spectrometry. Microchim Acta 177:497–504CrossRefGoogle Scholar
  87. 87.
    Liu Q, Shi J, Sun J, Wang T, Zeng L, Zhu N, Jiang G (2011) Graphene-assisted matrix solid-phase dispersion for extraction of polybrominated diphenyl ethers and their methoxylated and hydroxylated analogs from environmental samples. Anal Chim Acta 708:61–68CrossRefGoogle Scholar
  88. 88.
    Bai H, Li C, Shi G (2011) Functional composite materials based on chemically converted graphene. Adv Mater 23:1089–1115CrossRefGoogle Scholar
  89. 89.
    Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350–1375CrossRefGoogle Scholar
  90. 90.
    Kauffman DR, Star (2010) A graphene versus carbon nanotubes for chemical sensor and fuel cell applications. Analyst 135:2790–2797CrossRefGoogle Scholar
  91. 91.
    Zhang Q, Yang S, Zhang J, Zhang L, Kang P, Li J, Xu J, Zhou H, Song X-M (2011) Fabrication of an electrochemical platform based on the self-assembly of graphene oxide-multiwall carbon nanotube nanocomposite and horseradish peroxidase: direct electrochemistry and electrocatalysis. Nanotechnology 22:494010–494017CrossRefGoogle Scholar
  92. 92.
    Alarcón-Angeles G, Pérez-López B, Palomar-Pardave M, Ramírez-Silva M, Alegret S, Merkoci A (2008) Enhanced host–guest electrochemical recognition of dopamine using cyclodextrin in the presence of carbon nanotubes. Carbon 46:898–906CrossRefGoogle Scholar
  93. 93.
    Zelada-Guillén GA, Riu J, Düzgün A, Rius FX (2009) Immediate detection of living bacteria at ultralow concentrations using a carbon nanotube based potentiometric aptasensor. Angew Chem Int Ed 48:7334–7337CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Nanobioelectronics & Biosensors Group, Catalan Institute of NanotechnologyCIN2 (ICN-CSIC), Universitat Autònoma de BarcelonaBellaterraSpain
  2. 2.LEITAT Technological CenterTerrassaSpain
  3. 3.ICREABarcelonaSpain

Personalised recommendations