Advertisement

Microchimica Acta

, Volume 179, Issue 1–2, pp 149–156 | Cite as

Agglomerated polymer monoliths with bimetallic nano-particles as flow-through micro-reactors

  • Patrick Floris
  • Brendan Twamley
  • Pavel N. Nesterenko
  • Brett Paull
  • Damian ConnollyEmail author
Original Paper

Abstract

Polymer monoliths in capillary format have been prepared as solid supports for the immobilisation of platinum/palladium bimetallic nano-flowers. Optimum surface coverage of nano-flowers was realised by photografting the monoliths with vinyl azlactone followed by amination with ethylenediamine prior to nano-particle immobilisation. Field emission SEM imaging was used as a characterisation tool for evaluating nano-particle coverage, together with BET surface area analysis to probe the effect of nano-particle immobilisation upon monolith morphology. Ion exchange chromatography was also used to confirm the nature of the covalent attachment of nano-flowers on the monolithic surface. In addition, EDX and ICP analyses were used to quantify platinum and palladium on modified polymer monoliths. Finally the catalytic properties of immobilised bimetallic Pd/Pt nano-flowers were evaluated in flow-through mode, exploiting the porous interconnected flow-paths present in the prepared monoliths (pore diameter~1–2 μm). Specifically, the reduction of Fe (III) to Fe (II) and the oxidation of NADH to NAD+ were selected as model redox reactions. The use of a porous polymer monolith as an immobilisation substrate (rather than aminated micro-spheres) eliminated the need for a centrifugation step after the reaction.

Figure

Platinum/palladium bimetallic nanoflowers are immobilised on a porous polymer monolith for use as a flow-through microreactor

Keywords

Nano-particles Agglomerated monolith Micro-reactor Flow-through catalysis 

Notes

Acknowledgments

The authors would like to thank Science Foundation Ireland (Grant number 08/SRC/B1412) for research funding under the Strategic Research Cluster programme and also for equipment funding (Grant. Number 03/IN.3/1361/EC07). Also special thanks to Dr. Dario Arrua for the assistance with BET analysis and UTAS for the use of the instrumentation.

Supplementary material

604_2012_865_MOESM1_ESM.doc (158 kb)
ESM 1 (DOC 158 kb)

References

  1. 1.
    Basheer C, Hussain FSJ, Lee K, Valiyaveettil S (2004) Design of a capillary-microreactor for efficient Suzuki coupling reactions. Tetrahedron Lett 45(39):7297–7300CrossRefGoogle Scholar
  2. 2.
    Ahmed-Omer B, Brandt JC, Wirth T (2007) Advanced organic synthesis using microreactor technology. Org Biomol Chem 5(5):733–740CrossRefGoogle Scholar
  3. 3.
    Grzelczak M, Perez-Juste J, Mulvaney P, Liz-Marzan LM (2008) Shape control in gold nanoparticle synthesis. Chem Soc Rev 37(9):1783–1791CrossRefGoogle Scholar
  4. 4.
    Xia Y, Xiong Y, Lim B, Skrabalak SE (2009) Shape controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48(1):60–103CrossRefGoogle Scholar
  5. 5.
    Xuezhong G, Yun Y, Lijie Z, Chao Z, Ping C et al (2010) Controlled synthesis of Pt nanoparticles via seeding growth and their shaped-dependent catalytic activity. J Colloid Interface Sci 352(2):379–385CrossRefGoogle Scholar
  6. 6.
    Jingpeng W, Dan FT, Aicheng C (2008) Direct growth of novel alloyed PtAu nanodendrites. Chem Commun 40:5010–5012Google Scholar
  7. 7.
    Byungkwon L, Younan X (2011) Metal nanocrystals with highly branched morphologies. Angew Chem Int Ed 50(1):76–85CrossRefGoogle Scholar
  8. 8.
    Peng X, Pan Q, Rempel GL (2008) Bimetallic dendrimer-encapsulated nanoparticles as catalysts: a review of the research advances. Chem Soc Rev 37(8):1619–1628CrossRefGoogle Scholar
  9. 9.
    Toshima N, Yonexawa T (1998) Bimetallic nanoparticles—novel materials for chemical and physical applications. New J Chem 22(11):1179–1201CrossRefGoogle Scholar
  10. 10.
    Chung YM, Rhee HK (2003) Partial hydrogenation of 1, 3-cyclooctadiene using dendrimer-encapsulated Pd-Rh bimetallic nanoparticles. Journal of molecular catalysis A, Chemical 206(1–2):291–298CrossRefGoogle Scholar
  11. 11.
    Burguete IM, Garcia-Verdugo E, Luis SV, Restrepo JA (2011) Preparation of polymer-supported gold nanoparticles based on resins containing ionic liquid-like fragments: easy control of size and stability. Phys Chem Chem Phys 13(33):14831–14838CrossRefGoogle Scholar
  12. 12.
    Budnyk P, Damin A, Agostini G, Zecchina A (2010) Gold nanoparticle aggregates immobilized on high surface area silica substrate for efficient and clean SERS applications. J Phys Chem C 114(9):3857–3862CrossRefGoogle Scholar
  13. 13.
    Reetz MT, Winter M, Tesche B (1997) Self-assembly of tetraalkylammonium salt-stabilized giant palladium clusters on surfaces. Chem Commun 2:147–148CrossRefGoogle Scholar
  14. 14.
    Zheng N, Stuck GD (2006) A general synthetic strategy for oxide-supported metal nanoparticle catalysts. J Am Chem Soc 128(44):14278–14280CrossRefGoogle Scholar
  15. 15.
    Sachse A, Galarneau A, Coq B, Fajula F (2011) Monolithic flow microreactors improve fine chemicals synthesis. New J Chem 35(2):259–264CrossRefGoogle Scholar
  16. 16.
    Cao Q, Xu Y, Liu F, Svec F, Fréchet JMJ (2010) Polymer monoliths with exchangeable chemistries: use of gold nanoparticles as intermediate ligands for capillary columns with varying surface functionalities. Anal Chem 82(17):7416–7421CrossRefGoogle Scholar
  17. 17.
    Nikbin N, Ladlow M, Ley SV (2007) Continuous flow ligand-free Heck reactions using monolithic Pd [0] nanoparticles. Org Process Res Dev 11(3):458–462CrossRefGoogle Scholar
  18. 18.
    Bandari R, Knolle W, Prager-Duschke A, Glasel HR, Buchmeiser MR (2007) Monolithic media prepared via electron beam curing for proteins separation and flow-through catalysis. Macromol Chem Phys 208(13):1428–1436CrossRefGoogle Scholar
  19. 19.
    Mennecke K, Kirschning A (2009) Polyionic polymers—heterogeneous media for metal nanoparticles as catalyst in Suzuki-Miyaura and Heck-Mizoroki reactions under flow conditions. Beilstein J Org Chem 5:21CrossRefGoogle Scholar
  20. 20.
    Bolton KF, Canty AJ, Deverell JA, Guijt RM, Hilder EF et al (2006) Macroporous monolith supports for continuous flow capillary microreactors. Tetrahedron Lett 47(52):9321–9324CrossRefGoogle Scholar
  21. 21.
    Jones RC, Canty AJ, Deverell JA, Gardiner MG, Guijt RM et al (2009) Supported palladium catalysis using a heteroleptic 2-methylthiomethylpyridine-N, S-donor motif for Mizoroki-Heck and Suzuki-Miyaura coupling, including continuous organic monolith in capillary microscale flow-through mode. Tetrahedron 65(36):7474–7481CrossRefGoogle Scholar
  22. 22.
    Gomann A, Deverell JA, Munting KF, Jones RC, Rodemann T et al (2009) Palladium-mediated organic synthesis using porous polymer monolith formed in situ as a continuous catalyst support structure for application in microfluidic devices. Tetrahedron 65(7):1450–1454CrossRefGoogle Scholar
  23. 23.
    Lim B, Jiang MJ, Camargo PHC, Cho EC, Tao J (2009) Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 324(5932):1302–1305CrossRefGoogle Scholar
  24. 24.
    Connolly D, Twamley B, Paull B (2010) High-capacity gold nanoparticle functionalised polymer monoliths. Chem Commun 46(12):2109–2111CrossRefGoogle Scholar
  25. 25.
    Grabar KC, Freeman RG, Hommer MB, Natan MJ (1995) Preparation and characterization of Au colloid monolayers. Anal Chem 67(4):735–743CrossRefGoogle Scholar
  26. 26.
    Svec F, Fréchet JMJ (1996) New designs of macroporous polymers and supports: from separation to biocatalysis. Science 273(5272):205–2011CrossRefGoogle Scholar
  27. 27.
    Thabano J, Breadmore M, Hutchinson J, Johns C, Haddad PR (2009) Silica nanoparticle-templated methacrylic acid monoliths for in-line solid-phase extraction-capillary electrophoresis of basic analytes. J Chromatogr A 1216(25):4933–4940CrossRefGoogle Scholar
  28. 28.
    Krenkova J, Lacher NA, Svec F, Fréchet JMJ (2010) Control of selectivity via nanochemistry: monolithic capillary column containing hydroxyapatite nanoparticles for separation of proteins and enrichment of phosphopeptides. Anal Chem 82(19):8335–8341CrossRefGoogle Scholar
  29. 29.
    Peters EC, Petro M, Svec F, Fréchet JMJ (1997) Molded rigid polymer monoliths as separation media for capillary electrochromatography. Anal Chem 69(17):3646–3649CrossRefGoogle Scholar
  30. 30.
    Yang M, Yang Y, Liu Y, Shen G, Yu R (2006) Platinum nanoparticles-doped sol–gel/carbon nanotubes composite electrochemical sensors and biosensors. Biosens Bioelectron 21(7):1125–1131CrossRefGoogle Scholar
  31. 31.
    Hilder EF, Svec F, Fréchet JMJ (1997) Latex-functionalized monolithic columns for the separation of carbohydrates by micro anion-exchange chromatography. J Chromatogr A 1053(1–2):101–106Google Scholar
  32. 32.
    Yang WT, Rånby B (1996) Bulk surface photografting process and its applications. 1. Reactions and kinetics. J Appl Polymer Sci 62(3):533–543CrossRefGoogle Scholar
  33. 33.
    Yang WT, Rånby B (1996) Bulk surface photografting process and its applications. 2. Principal factors affecting surface photografting. J Appl Polymer Sci 62(3):545–555CrossRefGoogle Scholar
  34. 34.
    Stachowiak TB, Svec F, Fréchet JMJ (2006) Patternable protein resistant surfaces for multifunctional microfluidic devices via surface hydrophilization of porous polymer monoliths using photografting. Chem Mater 18(25):5950–5957CrossRefGoogle Scholar
  35. 35.
    Gillespie E, Connolly D, Paull B (2009) Using scanning contactless conductivity to optimise photografting procedures and capacity in the production of polymer ion-exchange monoliths. Analyst 134(7):1314–1321CrossRefGoogle Scholar
  36. 36.
    Connolly D, Floris P, Nesterenko PN, Paull B (2010) Non-invasive characterization of stationary phases in capillary flow systems using scanning capacitively coupled contactless conductivity detection (sC4D). Trends Anal Chem 29(8):870–884CrossRefGoogle Scholar
  37. 37.
    Chatenet M, Micoud F, Roche I, Chainet E (2006) Kinetics of sodium borohydride direct oxidation and oxygen reduction in sodium hydroxide electrolyte: Part I. BH4- electro-oxidation on Au and Ag catalysts. Electrochim Acta 51(25):5459–5467CrossRefGoogle Scholar
  38. 38.
    Henglein A, Lilie J (1981) Radiation electrochemistry of the colloidal cadmium microelectrode. Catalysis of hydrogen formation by organic free-radicals. J Phys Chem 85(9):1246–1251CrossRefGoogle Scholar
  39. 39.
    Henglein A, Lilie J (1981) Storage of electrons in aqueous solution: the rates of chemical charging and discharging the colloidal silver microelectrode. J Am Chem Soc 103(5):1059–1066CrossRefGoogle Scholar
  40. 40.
    Freund T (1959) Kinetics of the reduction of inorganic ions by borohydride: 1 Ferricyanide. J Inorg Nucl Chem 9(3–4):246–251CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Patrick Floris
    • 1
  • Brendan Twamley
    • 2
  • Pavel N. Nesterenko
    • 3
  • Brett Paull
    • 3
  • Damian Connolly
    • 1
    • 2
    Email author
  1. 1.Irish Separation Science Cluster, National Centre for Sensor ResearchDublin City UniversityDubin 9Ireland
  2. 2.School of Chemical SciencesDublin City UniversityDublin 9Ireland
  3. 3.Australian Centre for Research on Separation Science (ACROSS), School of ChemistryUniversity of TasmaniaHobartAustralia

Personalised recommendations