Advertisement

Microchimica Acta

, Volume 178, Issue 3–4, pp 381–387 | Cite as

Electrokinetically-controlled RNA-DNA hybridization assay for foodborne pathogens

  • Xuan Weng
  • Hai Jiang
  • Dongqing LiEmail author
Original Paper

Abstract

We have developed a microfluidic chip for use in an RNA-DNA hybridization assay for foodborne pathogens. Automatic sequential reagent dispensing and washing was realized with a programmable DC voltage sequencer. Signal detection was achieved with a miniaturized optical detection module. Salmonella and Listeria monocytogenes bacteria in different concentrations were quantitatively determined by this RNA-DNA hybridization assay in the microfluidic chip. The detection limit for the Salmonella and Listeria monocytogenes bacteria is 103 to 104 CFU mL−1. The method excels by a significant reduction in the consumption of sample and reagent, and a short assay time. This automatic-operating microfluidic RNA-DNA hybridization assay is promising for on-site pathogen detection.

Figure

An RNA-DNA hybridization assay microfluidic chip with electrokinetic control for foodborne pathogens detection was developed. Salmonella and Listeria monocytognes bacteria of different concentrations were tested on the RNA-DNA hybridization assay microfluidic chip. The major advantages of this method include significant reduction in the sample and reagent consumption, and substantially short assay time

Keywords

RNA-DNA hybridization assay Electrokinetics Microfluidics Salmonella Listeria monocytogenes 

Notes

Acknowledgments

The authors would like to express appreciation to the financial support of the Canada Research Chairs program and the Natural Sciences and Engineering Research Council (NSERC) of Canada through a research grant to Dr. Dongqing Li. Thanks also go to Dr. Shu Chen and Dr. Honghe Cao (Laboratory Services Division, University of Guelph) for providing the reagents and bacterial samples.

References

  1. 1.
    Velusamy V, Arshak K, Korostynska O, Oliwa K, Adley C (2010) An overview of foodborne pathogen detection: in the perspective of biosensors. Biotechnol Adv 28:232–254CrossRefGoogle Scholar
  2. 2.
    Chemburu S, Wilkins E, Abdel-Hamid I (2005) Detection of pathogenic bacteria in food samples using highly-dispersed carbon particles. Biosens Bioelectron 21:491–499CrossRefGoogle Scholar
  3. 3.
    Swaminathan B, Feng P (1994) Rapid detection of food-borne pathogenic bacteria. Annu Rev Microbiol 48:401–426CrossRefGoogle Scholar
  4. 4.
    Ayçiçek H, Aydoğan H, Küçükkaraaslan A, Baysallar M, Basustaoğlu AC (2004) Assessment of the bacterial contamination on hands of hospital food handlers. Food Control 15:253–259CrossRefGoogle Scholar
  5. 5.
    Artault S, Blind JL, Delaval J, Dureuil Y, Gaillard N (2001) Detecting Listeria monocytogenes in food. Int Food Hyg 12:23Google Scholar
  6. 6.
    Stephan R, Schumacher S, Zychowska MA (2003) The VITR technology for rapid detection of Listeria monocytogenes and other Listeria spp. Int J Food Microbiol 89:287–290CrossRefGoogle Scholar
  7. 7.
    Valdivieso-Garcia A, Desruisseau A, Riche E, Fukuda S, Tatsumi H (2003) Evaluation of a 24- hour bioluminescent enzyme immunoassay for the rapid detection of Salmonella in chicken carcass rinses. J Food Prot 66:1996–2004Google Scholar
  8. 8.
    Chen CS, Durst RA (2006) Simultaneous detection of Escherichia coli O157: H7, Salmonella spp. and Listeria monocytogenes with an array-based immunosorbent assay using universal protein G-liposomal nanovesicles. Talanta 69:232–238CrossRefGoogle Scholar
  9. 9.
    Magliulo M, Simoni P, Guardigli M, Michelini E, Luciani M, Lelli R, Roda A (2007) A rapid multiplexed chemiluminescent immunoassay for the detection of Escherichia coli O157: H7, Yersinia enterocolitica, Salmonella typhimurium, and Listeria monocytogenes pathogen bacteria. J Agric Food Chem 55:4933–4939CrossRefGoogle Scholar
  10. 10.
    Churchill RLT, Lee H, Hall JC (2006) Detection of Listeria monocytogenes and the toxin listeriolysin O in food. J Microbiol Methods 64:141–170CrossRefGoogle Scholar
  11. 11.
    Lei IF, Roffey P, Blanchard C, Gu K (2008) Development of a multiplex PCR method for the detection of six common foodborne pathogens. J Food Drug Anal 16:37–43Google Scholar
  12. 12.
    Kim JS, Lee GG, Park JS, Jung YH, Kwak HS, Kim SB, Nam YS, Kwon ST (2007) A novel multiplex PCR assay for rapid and simultaneous detection of five pathogenic bacteria: Escherichia coli O157: H7, Salmonella, Staphylococcus aureus, Listeria monocytogenes, and Vibrio parahaemolyticus. J Food Protect 70:1656–1662Google Scholar
  13. 13.
    O’Grady J, Sedano-Balbas S, Maher M, Smith T, Barry T (2008) Rapid real-time PCR detection of Listeria monocytogenes in enriched food samples based on the SSR A gene, a novel diagnostic target. Food Microbiol 25:75–84CrossRefGoogle Scholar
  14. 14.
    Murphy NM, McLauchlin J, Ohai C, Grant KA (2007) Construction and evaluation of a microbiological positive process internal control for PCR-based examination of food samples for Listeria monocytogenes and Salmonella enterica. Int J Food Microbiol 120:110–119CrossRefGoogle Scholar
  15. 15.
    Cano RJ, Torres MJ, Klem RE, Palomares JC, Casadesus J (1992) Detection of Salmonellas by DNA hybridization with a fluorescent alkaline phosphatase substrate. J Appl Bacteriol 72:393–399CrossRefGoogle Scholar
  16. 16.
    Li A, Yang F, Ma Y, Yang X (2007) Electrochemical impedance detection of DNA hybridization based on dendrimer modified electrode. Biosens Bioelectron 22:1716–1722CrossRefGoogle Scholar
  17. 17.
    Chen IJ, White IM (2011) High-sensitivity electrochemical enzyme-linked assay on a microfluidic interdigitated microelectrode. Biosens Bioelectron 26:4375–4381CrossRefGoogle Scholar
  18. 18.
    Yeh CH, Chang YH, Lin HP, Chang TC, Lin YC (2012) A newly developed optical biochip for bacteria detection based on DNA hybridization. Sens Actuators B 161:1168–1175CrossRefGoogle Scholar
  19. 19.
    Senapati S, Mahon AR, Gordon J, Nowak C, Sengupta S (2009) Rapid on-chip genetic detection microfluidic platform for real world applications. Biomicrofluidics 3:022407CrossRefGoogle Scholar
  20. 20.
    Ali MF, Kirby R, Goodey AP, Rodriguez MD, Ellington AD, Neikirk DP, McDevitt JT (2003) DNA hybridization and discrimination of single-nucleotide mismatches using chip-based microbead arrays. Anal Chem 75:4732–4739CrossRefGoogle Scholar
  21. 21.
    Choi S, Goryll M, Sin LYM, Wong PK, Chae J (2011) Microfluidic-based biosensors toward point-of-care detection of nucleic acids and proteins. Microfluid Nanofluid 10:231–247CrossRefGoogle Scholar
  22. 22.
    Berti F, Laschi S, Palchetti I, Rossier JS, Reymond F, Mascini M, Marrazza G (2009) Microfluidic-based electrochemical genosensor coupled to magnetic beads for hybridization detection. Talanta 77:971–978CrossRefGoogle Scholar
  23. 23.
    Sawada K, Oda C, Takao H, Ishida M (2007) Smart microfluidic electrochemical DNA sensors with signal processing circuits. Jpn J App Phys 46:3135–3313CrossRefGoogle Scholar
  24. 24.
    Tavares AJ, Petryayeva E, Algar WR, Chen L, Krull UJ (2010) Toward a hybridization assay using fluorescence resonance energy transfer and quantum dots immobilized in microfluidic channels. Proc SPIE 7750:775003CrossRefGoogle Scholar
  25. 25.
    Javanmard M, Davis RW (2011) A microfluidic platform for electrical detection of DNA hybridization. Sens Actuators B 154:22–27, dx.doi.orgCrossRefGoogle Scholar
  26. 26.
    Kang TJ, Lim D, Nam J, Kim YH (2010) Multifunctional nanocomposite membrane for chemomechanical transducer. Sens Actuators B 147:691–696CrossRefGoogle Scholar
  27. 27.
    Donhauser SC, Niessner R, Seidel M (2011) Sensitive quantification of Escherichia coli O157:H7, Salmonella enterica, and Campylobacter jejuni by combining stopped polymerase chain reaction with chemiluminescence flow-through DNA microarray analysis. Anal Chem 83:3153–3160CrossRefGoogle Scholar
  28. 28.
    Wang CH, Lien KY, Wu JJ, Lee GB (2011) A magnetic bead-based assay for the rapid detection of methicillin-resistant Staphylococcus aureus by using a microfluidic system with integrated loopmediated isothermal amplification. Lab Chip 11:1521–1531CrossRefGoogle Scholar
  29. 29.
    Sochol RD, Casavant BP, Dueck ME, Lee LP, Lin L (2011) A dynamic bead-based microarray for parallel DNA detection. J Micromech Microeng 21:054019CrossRefGoogle Scholar
  30. 30.
    Wang X, Chen X, Ma X, Kong X, Xu Z, Wang J (2011) Fast DNA hybridization on a microfluidic mixing device based on pneumatic driving. Talanta 84:565–571CrossRefGoogle Scholar
  31. 31.
    Schüler T, Kretschmer R, Jessing S, Urban M, Fritzsche W, Möler R, Popp J (2009) A disposable and cost efficient microfluidic device for the rapid chip-based electrical detection of DNA. Biosens Bioelectron 25:15–21CrossRefGoogle Scholar
  32. 32.
    Vergauwe N, Witters D, Ceyssens F, Vermeir S, Verbruggen B, Puers R, Lammertyn J (2011) A versatile electrowetting-based digital microfluidic platform for quantitative homogeneous and heterogeneous bio-assays. J Micromech Microeng 21:054026CrossRefGoogle Scholar
  33. 33.
    Maciorowski KG, Herrera P, Jones FT, Pillai SD, Ricke SC (2006) Cultural and immunological detection methods for Salmonella spp. in animal feeds-a review. Vet Res Commun 30:127–137CrossRefGoogle Scholar
  34. 34.
    Biddiss E, Erickson D, Li D (2004) Heterogeneous surface charge enhanced micromixing for electrokinetic flows. Anal Chem 76:3208–3213CrossRefGoogle Scholar
  35. 35.
    Weng X, Jiang H, Chon C, Chen S, Cao H, Li D (2011) An RNA-DNA hybridization assay chip with electrokinetically controlled oil droplet valves for sequential microfluidic operations. J Biotechnol 155:330–337CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of Mechanical and Mechatronics EngineeringUniversity of WaterlooWaterlooCanada

Personalised recommendations