Microchimica Acta

, Volume 178, Issue 3–4, pp 323–330

Electrodeposition of CdSe quantum dots and its application to an electrochemiluminescence immunoassay for α-fetoprotein

Original Paper


We report on the first label-free electrochemiluminescence (ECL) immunosensor for α-fetoprotein (AFP). It is based on the use of CdSe quantum dots that were electrodeposited directly on a gold electrode from an electrolyte (containing cadmium sulfate, EDTA and selenium dioxide) by cycling the potential between 0 and -1.2 V (vs. SCE) for 60 s. The electrodeposited dots were characterized by scanning electron microscopy and energy dispersive spectroscopy. Under optimal conditions, the specific immunoreaction between AFP and anti-AFP resulted in a decrease of the ECL signal because of the steric hindrance and the transfer inhibition by peroxodisulfate. The quenching effect of the immunoreaction on the intensity of the ECL was used to establish a calibration plot which is linear in the range from 0.05 to 200 ng mL−1. The detection limit is 2 pg mL−1. The assay is highly sensitive and satisfactorily reproducible. In our opinion it opens new avenues to apply ECL in label-free biological assays.


We report on the first label-free electrochemiluminescence (ECL) immunosensor for α-fetoprotein (AFP). It is based on the use of CdSe quantum dots that were electrodeposited directly on a gold electrode from an electrolyte. Under optimal conditions, the specific immunoreaction between AFP and anti-AFP resulted in a decrease of the ECL signal because of the steric hindrance and the transfer inhibition by peroxodisulfate


Biosensor CdSe Electrochemiluminescence Electrodeposition Immunoassay 

Supplementary material

604_2012_844_MOESM1_ESM.doc (116 kb)
ESM 1(DOC 116 kb)


  1. 1.
    Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937CrossRefGoogle Scholar
  2. 2.
    Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102CrossRefGoogle Scholar
  3. 3.
    Selvan ST, Tan TTY, Yi DK, Jana NR (2010) Functional and multifunctional nanoparticles for bioimaging and biosensing. Langmuir 26:11631–11641CrossRefGoogle Scholar
  4. 4.
    Beloglazova NV, Goryacheva IY, Niessner R, Knop D (2011) A comparison of horseradish peroxidase, gold nanoparticles and qantum dots as labels in non-instrumental gel-based immunoassay. Microchim Acta 175:361–36CrossRefGoogle Scholar
  5. 5.
    Trapiella-Alfonso L, Costa-Fernández JM, Pereiro R, Sanz-Medel A (2011) Development of a quantum dot-based fluorescent immunoassay for progesterone determination in bovine milk. Biosens Bioelectron 26:4753–4759CrossRefGoogle Scholar
  6. 6.
    Ding ZF, Quinn BM, Haram SK, Pell LE, Korgel BA, Bard AJ (2002) Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots. Science 296:1293–1297CrossRefGoogle Scholar
  7. 7.
    Lei JP, Ju HX (2011) Fundamentals and bioanalytical applications of functional quantum dots as electrogenerated emitters of chemiluminescence. Trends Anal Chem 30:1352–1359CrossRefGoogle Scholar
  8. 8.
    Li XY, Wang RY, Zhang XL (2011) Electrochemiluminescence immunoassay at a nanoporous gold leaf electrode and using CdTe quantun dots as labels. Microchim Acta 172:285–290CrossRefGoogle Scholar
  9. 9.
    Wang T, Zhang SY, Mao CJ, Song JM, Niu HL, Jin BK, Tia YP (2012) Enhanced electrochemiluminescence of CdSe quantum dots composited with graphene oxide and chitosan for sensitive sensor. Biosens Bioelectron 31:369–375CrossRefGoogle Scholar
  10. 10.
    Yu CX, Yan JL, Tu YF (2011) Electrochemiluminescent sensing of dopamine using CdTe quantum dots capped with thioglycolic acid and supported with carbon nanotubes. Microchim Acta 175:347–354CrossRefGoogle Scholar
  11. 11.
    Guo ZY, Hao TT, Wang S, Gan N, Li X, Wei DY (2012) Electrochemiluminescence immunosensor for the determination of ag alpha fetoprotein based on energy scavenging of quantum dots. Electrochem Commun 14:13–16CrossRefGoogle Scholar
  12. 12.
    Qian J, Zhang CY, Cao XD, Liu SQ (2010) Versatile immunosensor using a quantum dot coated silica nanosphere as a label for signal amplification. Anal Chem 82:6422–6429CrossRefGoogle Scholar
  13. 13.
    Yuan L, Hua X, Wu YF, Pan XH, Liu SQ (2011) Polymer-functionalized silica nanosphere labels for ultrasensitive detection of tumor necrosis factor-alpha. Anal Chem 83:6800–6809CrossRefGoogle Scholar
  14. 14.
    Deng SY, Lei JP, Cheng LX, Zhang YY, Ju HX (2011) Amplified electrochemiluminescence of quantum dots by electrochemically reduced graphene oxide for nanobiosensing of acetylcholine. Biosens Bioelectron 26:4552–4558CrossRefGoogle Scholar
  15. 15.
    Zhang YY, Deng SY, Lei JP, Xu QN, Ju HX (2011) Carbon nanospheres enhanced electrochemiluminescence of CdS quantum dots for biosensing of hypoxanthine. Talanta 85:2154–2158CrossRefGoogle Scholar
  16. 16.
    Lincot D (2005) Electrodeposition of semiconductors. Thin Solid Films 487:40–48CrossRefGoogle Scholar
  17. 17.
    Mondal SP, Dhar A, Ray SK (2007) Optical properties of CdS nanowires prepared by dc electrochemical deposition in porous alumina template. Mat Sci Semicon Proc 10:185–193CrossRefGoogle Scholar
  18. 18.
    Jhang JH, Hung WH (2011) Hollow CdS nanoparticles formed through electrodeposition of Cd(OH)2 ongraphite and treatment with H2S. Mater Chem Phys 129:512–516CrossRefGoogle Scholar
  19. 19.
    Yang LX, Chen BB, Luo SL, Li JX, Liu RH, Cai QY (2010) Sensitive detection of polycyclic aromatic hydrocarbons using CdTe quantum dot-modified TiO2 nanotube array through fluorescence resonance energy transfer. Environ Sci Technol 44:7884–7889CrossRefGoogle Scholar
  20. 20.
    Wang XN, Zhu HJ, Xu YM, Wang H, Tao Y, Hark SK, Xiao XD, Li Q (2010) Aligned ZnO/CdTe core-shell nanocable arrays on indium tin oxide: synthesis and photoelectrochemical properties. ACS Nano 4:3302–3308CrossRefGoogle Scholar
  21. 21.
    Tian L, Ding J, Zhang W, Yang HB, Fu WY, Zhou XM, Zhao WY, Zhang LN, Fan XY (2011) Synthesis and photoelectric characterization of semiconductor CdSe microrod array by a simple electrochemical synthesis method. Appl Surf Sci 257:10535–10538CrossRefGoogle Scholar
  22. 22.
    Erenturk B, Gurbuz S, Corbett RE, Claiborne SM, Krizan J, Venkataraman D, Carter KR (2011) Formation of crystalline cadmium selenide nanowires. Chem Mater 23:3371–3376CrossRefGoogle Scholar
  23. 23.
    Hao YZ, Pei J, Wei Y, Cao YH, Jiao SH, Zhu F, Li JJ, Xu DH (2010) Efficient Semiconductor-Sensitized Solar Cells Based on Poly(3-hexylthiophene)@CdSe@ZnO Core-Shell Nanorod Arrays. J Phys Chem C 114:8622–8625CrossRefGoogle Scholar
  24. 24.
    Chen F, Qiu WM, Chen XQ, Yang LG, Jiang XX, Wang M, Chen HZ (2011) Large-scale fabrication of CdS nanorod arrays on transparent conductive substrates from aqueous solutions. Sol Energy 85:2122–2129CrossRefGoogle Scholar
  25. 25.
    Yu XY, Liao JY, Qiu KQ, Kuang DB, Su CY (2011) Dynamic Study of Highly Efficient CdS/CdSe Quantum Dot-Sensitized Solar Cells Fabricated by Electrodeposition. ACS Nano 5:9494–9500CrossRefGoogle Scholar
  26. 26.
    Wang F, Hu SS (2009) Electrochemical sensors based on metal and semiconductor nanoparticles. Microchim Acta 165:1–22CrossRefGoogle Scholar
  27. 27.
    Henríquez R, Badán A, Grez BP, Muñoz E, Vera J, Dalchiele EA, Marotti RE, Gómez H (2011) Electrodeposition of nanocrystalline CdSe thin films from dimethyl sulfoxide solution: Nucleation and growth mechanism, structural and optical studies. Electrochim Acta 56:4895–4901CrossRefGoogle Scholar
  28. 28.
    Shaikh AV, Mane RS, Joo OS, Pawar BN, Lee JK, Han SH (2011) Baking impact on photoelectrochemical cells performance of electrodeposited CdSe films. J Phys Chem Solids 72:1122–1127CrossRefGoogle Scholar
  29. 29.
    Wright LM, Kreikemerier JT, Fimmel CJ (2007) A concise review of serum markers for hepatocellular cancer. Cancer Detect Prev 31:35–44CrossRefGoogle Scholar
  30. 30.
    Wang HY, Sun DY, Tan ZA, Gong W, Wan L (2011) Electrochemiluminescence immunosensor for α-fetoprotein using Ru(bpy)32+-encapsulated liposome as labels. Colloid Surface B 84:515–519CrossRefGoogle Scholar
  31. 31.
    Cao YL, Yuan R, Chai YQ, Mao L, Niu H, Liu HJ, Zhuo Y (2012) Ultrasensitive luminol electrochemiluminescence for protein detection based on in situ generated hydrogen peroxide as coreactant with glucose oxidase anchored AuNPs@MWCNTs labelling. Biosens Bioelectron 31:305–309CrossRefGoogle Scholar
  32. 32.
    Hong CL, Yuan R, Chai YQ, Zhuo Y, Yan X (2012) A strategy for signal amplification using an amperometric enzyme immunosensor based on HRP modified platinum nanoparticles. J Electroanal Chem 664:20–25CrossRefGoogle Scholar
  33. 33.
    Su HL, Yuan R, Chai YQ, Zhuo Y, Hong CL, Liu ZY, Yang X (2009) Multilayer structured amperometric immunosensor built by self-assembly of a redox multi-wall carbon nanotube composite. Electrochim Acta 54:4149–4154CrossRefGoogle Scholar
  34. 34.
    Yang ZJ, Liu H, Zong C, Yan F, Ju HX (2009) Automated support-resolution strategy for a one-way chemiluminescent multiplex immunoassay. Anal Chem 81:5484–5489CrossRefGoogle Scholar
  35. 35.
    Yuan SR, Yuan R, Chai YQ, Mao L, Yang X, Yuan YL, Niu H (2010) Sandwich-type electrochemiluminescence immunosensor based on Ru-silica@Au composite nanoparticles labeled anti-AFP. Talanta 82:1468–1471CrossRefGoogle Scholar
  36. 36.
    Yang XY, Guo YS, Bi S, Zhang SS (2009) Ultrasensitive enhanced chemiluminescence enzyme immunoassay for the determination of α-fetoprotein amplified by double-codified gold nanoparticles label. Biosens Bioelectron 24:2707–2711CrossRefGoogle Scholar
  37. 37.
    Li LL, Liu KP, Yang GH, Wang CM, Zhang JR, Zhu JJ (2011) Fabrication of graphene-quantum dots composites for sensitive electrogenerated chemiluminescence immunosensing. Adv Funct Mater 21:869–878CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringShandong UniversityJinanChina

Personalised recommendations