Advertisement

Microchimica Acta

, Volume 178, Issue 3–4, pp 301–307 | Cite as

Comparative SPR study on the effect of nanomaterials on the biological activity of adsorbed proteins

  • Qiaohan Mei
  • Xiaorong Ding
  • Yangyang Chen
  • Jiang Hong
  • Kwangnak Koh
  • Jaebeom Lee
  • Hongxia Chen
  • Yongmei Yin
Original Paper

Abstract

Bioactivity of proteins is evaluated to test the adverse effects of nanoparticles interjected into biological systems. Surface plasmon resonance (SPR) spectroscopy detects binding affinity that is normally related to biological activity. Utilizing SPR spectroscopy, a concise testing matrix is established by investigating the adsorption level of bovine serum albumin (BSA) and anti-BSA on the surface covered with 11-mercaptoundecanoic acid (MUA); magnetic nanoparticles (MNPs) and single-walled carbon nanotubes (SWCNTs), respectively. The immunoactivity of BSA on MNPs and SWCNT decreased by 18 % and 5 %, respectively, compared to that on the gold film modified with MUA. This indicates that MNPs cause a considerable loss of biological activity of adsorbed protein. This effect can be utilized for practical applications on detailed biophysical research and nanotoxicity studies.

Figure

Schematic diagram of Ab-Ag interaction on MNPs confined Au surface (left) and SPR study on the immunoactivity of BSA adsorbed on MNPs (right).

Keywords

Surface plasmon resonance Magnetic nanoparticles BSA Bioactivity of proteins 

Notes

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant Nos. 31100560, 81172503), Innovation Program of the Shanghai Municipal Education Commission (11YZ07) and by SRF for ROCS, SEM and the Leading Academic Discipline Project of Shanghai Municipal Education Commission (J50108).

References

  1. 1.
    Parveen S, Misra R, Sahoo SK (2012) Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine: NBM 8:147–166CrossRefGoogle Scholar
  2. 2.
    Pividori MI, Alegret S (2010) Micro and nanoparticles in biosensing systems for food safety and environmental monitoring. An example of converging technologies. Microchim Acta 170:227–242CrossRefGoogle Scholar
  3. 3.
    Xia YS, Zhu CQ (2009) Interaction of CdTe nanocrystals with thiol-containing amino acids at different pH: a fluorimetric study. Microchim Acta 164:29–34CrossRefGoogle Scholar
  4. 4.
    Chhabra R, Sharma J, Wang H, Zou S, Lin S, Yan H et al (2009) Distance-dependent interactions between gold nanoparticles and fluorescent molecules with DNA as tunable spacers. Nanotechnology 20:485201–485210CrossRefGoogle Scholar
  5. 5.
    Karlsson HL, Gustafsson J, Cronholm P, Moller L (2009) Size-dependent toxicity of metal oxide particles-a comparison between nano- and micrometer size. Toxicol Lett 188:112–118CrossRefGoogle Scholar
  6. 6.
    Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627CrossRefGoogle Scholar
  7. 7.
    Service RF (2003) Nanomaterials show signs of toxicity. Science 300:243CrossRefGoogle Scholar
  8. 8.
    Brumfiel G (2003) Nanotechnology: a little knowledge. Nature 424:246–248CrossRefGoogle Scholar
  9. 9.
    Dowling A, Clift R, Grobert N, Hutton D, Oliver R, O’Neill O, et al (2004) Nanoscience and nanotechnologies: opportunities and uncertainties. London: The Royal Society & The Royal Academy of Engineering Report: 61–64Google Scholar
  10. 10.
    Chen Z, Meng H, Xing GM, Chen CY, Zhao YL (2006) Acute toxicological effects of copper nanopaticles in vivo. Toxicol Lett 263:109–120CrossRefGoogle Scholar
  11. 11.
    Wang B, Feng WY, Wang TC, Jia G, Wang M, Shi JW et al (2006) Acute toxicity of nano- and micro-scale zine powder in healthy adult mice. Toxicol Lett 161:115–123CrossRefGoogle Scholar
  12. 12.
    Auffan M, Rose J, Bottero JY, Lowry GV, Jolivet JP, Wiesner MR (2009) Towards a definition of inorganic nanoparticles from an environmental, healthy and safety perspective. Nat Nanotechnol 4:634–641CrossRefGoogle Scholar
  13. 13.
    Amano T, Toyooka T, Ibuki Y (2010) Preraration of DNA-adsorbed TiO2 particles-augmentation of performance for environmental purification by increasing DNA adsorption by external Ph regulation. Sci Total Environ 408:480–485CrossRefGoogle Scholar
  14. 14.
    Kurepa J, Paunesku T, Vogt S, Arora H, Rabatic BM, Lu J et al (2010) Uptake and distribution of ultrasmall anatase TiO2 alizarin red S nanoconjugates in arabidopsis thaliana. Nano Lett 10:2296–2302CrossRefGoogle Scholar
  15. 15.
    Hung AM, Micheel CM, Bozano LD, Osterbur LW, Wallraff GM, Cha JN (2010) Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami. Nat Nanotechnol 5:121–126CrossRefGoogle Scholar
  16. 16.
    Duguet E, Vasseur S, Mornet S, Devoisselle JM (2006) Magnetic nanoparticles and their applications in medicine. Nanomedicine 1:157–168CrossRefGoogle Scholar
  17. 17.
    Kwon JT, Hwang SK, Jin H et al (2008) Body distribution of inhaled fluorescent magnetic nanoparticles in the mice. J Occup Health 50:1–6CrossRefGoogle Scholar
  18. 18.
    Kwon JT, Kim DS, Minai-Tehrani A et al (2009) Inhaled fluorescent magnetic nanoparticles induced extramedullary hematopoiesis in the spleen of mice. J Occup Health 5:423–431CrossRefGoogle Scholar
  19. 19.
    Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T et al (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6:1794–1807CrossRefGoogle Scholar
  20. 20.
    Simon-Deckers A, Loo S, Mayne-L’hermite M, Herlin-Boime N, Menguy N, Reynaud C et al (2009) Size-, composition- and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria. Environ Sci Technol 43:8423–8429CrossRefGoogle Scholar
  21. 21.
    Jang D, Lee HY, Park M, Nam SR, Hong JI (2010) Nano- and micro-structure fabrication by using a three-component system. Chemistry 16:4836–4842CrossRefGoogle Scholar
  22. 22.
    An H, Liu Q, Ji Q, Jin B (2010) DNA binding and aggregation by carbon nanoparticles. J Biochem Biophys Res Commun 393:571–576CrossRefGoogle Scholar
  23. 23.
    Donaldson K, Stone V, Tran CL, Kreyling W, Borm PJ (2004) Nanotoxicology. J Occup Environ 61:727–728CrossRefGoogle Scholar
  24. 24.
    Sayes CM, Liang F, Hudson JL, Mendez J, Guo W, Beach JM et al (2006) Functionalization density dependence of single-wall carbon nanotubes cytotoxicity in vitro. Toxicol Lett 161:135–142CrossRefGoogle Scholar
  25. 25.
    Konry T, Bale SS, Bhushan A, Shen K, Seker E, Polyak B et al (2011) Particles and microfluidics merged: perspectives of highly sensitive diagniostic detection. Microchim Acta 176:251–269Google Scholar
  26. 26.
    Pappert G, Rieger M, Niessner R, Seidel M (2010) Immunomagnetic nanoparticle-based sandwich chemiluminescence-ELISA for the enrichment and quantification of E. Coli Microchim Acta 168:1–8CrossRefGoogle Scholar
  27. 27.
    Huang MM, Qiao ZW, Miao F, Jia N, Shen HB (2009) Biofunctional magnetic nanoparticles as contrast agents for magnetic resonance imaging of pancreas cancer. Microchim Acta 167:27–34CrossRefGoogle Scholar
  28. 28.
    Buyukhatipoglu K, Clyne AM (2010) Superparamagnetic iron oxide nanoparticles change endothelial cellmorphology and mechanics via reactive oxygen species formation. J Biomed Mater Res 96:186–195Google Scholar
  29. 29.
    Naqvi S, Samim M, Abdin MZ, Ahmed FJ, Maitra A, Prashant CK, Dinda AK (2010) Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress. Int J Nanomed 5:983–989CrossRefGoogle Scholar
  30. 30.
    Massart R (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn 17:1247–1248CrossRefGoogle Scholar
  31. 31.
    Hong RY, Li JH, Zhang SZ, Li HZ, Zheng Y, Jm D, Wei DG (2009) Preparation and characterization of silica-coated Fe3O4 nanoparticles used as precursor of ferrofluids. Appl Surf Sci 255:3485–3492CrossRefGoogle Scholar
  32. 32.
    Shukla A, Patra MK, Mathew M, Songara S, Singh VK, Gowd GS, Vadera SR, Kumar N (2010) Preparation and characterization of biocompatible and water-dispersible SPIONs. Adv Sci Lett 3:161–167CrossRefGoogle Scholar
  33. 33.
    Oh SW, Moon JD, Lim HJ, Park SY, Kim T, Park J et al (2005) Calixarene derivative as a tool for highly sensitive detection and oriented immobilization of proteins in a microarray format through noncovalent molecular interaction. FASEB 1335–1337Google Scholar
  34. 34.
    Li X, Peng YH, Qu XG (2006) Carbon nanotubes selective destabilization of duplex and triplex DNA and inducing B-A transition in solution. Nucleic Acids Res 34:3670–3676CrossRefGoogle Scholar
  35. 35.
    Dong H, Cao X, Li CM, Hu WH (2008) An in situ electrochemical surface plasmon resonance immunosensor with polypyrrole propylic acid film: Comparison between SPR and electrochemical responses from polymer formation to protein immunosensing. Biosens Bioelectron 23:1055–1062CrossRefGoogle Scholar
  36. 36.
    Hu WH, Li CM, Dong H (2008) Poly(pyrrole-co-pyrrole propylic acid) film and its application in label-free surface plasmon resonance immunosensors. Anal Chim Acta 630:67–74CrossRefGoogle Scholar
  37. 37.
    Malmsten M (1998) Formation of adsorbed protein layer. J Colloid Interface Sci 207:186–199CrossRefGoogle Scholar
  38. 38.
    Chen HX, Huang JY, Lee J, Hwang S, Koh K (2010) Surface plasmon resonance spectroscopic characterization of antibody orientation and activity on the calixarene monolayer. Sens Actuators, B 147:548–553CrossRefGoogle Scholar
  39. 39.
    Sauzedde F, Elaissari A, Pichot C (2009) Hydrophilic magnetic polymer latexes. 1. Adsorption of magnetic iron oxide nanoparticles onto various cationic latexes. J Colloid Polym Sci 277:846–855CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Qiaohan Mei
    • 1
  • Xiaorong Ding
    • 2
  • Yangyang Chen
    • 1
  • Jiang Hong
    • 1
  • Kwangnak Koh
    • 3
  • Jaebeom Lee
    • 3
  • Hongxia Chen
    • 1
  • Yongmei Yin
    • 2
  1. 1.Laboratory of Biosensing Technology, School of Life SciencesShanghai UniversityShanghaiChina
  2. 2.Department of Oncologythe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
  3. 3.Department of Nanomedical EngineeringPusan National UniversityMiryangRepublic of Korea

Personalised recommendations