Microchimica Acta

, Volume 178, Issue 1–2, pp 7–28 | Cite as

Recent developments in rapid multiplexed bioanalytical methods for foodborne pathogenic bacteria detection

  • Aldo RodaEmail author
  • Mara Mirasoli
  • Barbara Roda
  • Francesca Bonvicini
  • Carolina Colliva
  • Pierluigi Reschiglian
Review Article


Foodborne illnesses caused by pathogenic bacteria represent a widespread and growing problem to public health, and there is an obvious need for rapid detection of food pathogens. Traditional culture-based techniques require tedious sample workup and are time-consuming. It is expected that new and more rapid methods can replace current techniques. To enable large scale screening procedures, new multiplex analytical formats are being developed, and these allow the detection and/or identification of more than one pathogen in a single analytical run, thus cutting assay times and costs. We review here recent advancements in the field of rapid multiplex analytical methods for foodborne pathogenic bacteria. A variety of strategies, such as multiplex polymerase chain reaction assays, microarray- or multichannel-based immunoassays, biosensors, and fingerprint-based approaches (such as mass spectrometry, electronic nose, or vibrational spectroscopic analysis of whole bacterial cells), have been explored. In addition, various technological solutions have been adopted to improve detectability and to eliminate interferences, although in most cases a brief pre-enrichment step is still required. This review also covers the progress, limitations and future challenges of these approaches and emphasizes the advantages of new separative techniques to selectively fractionate bacteria, thus increasing multiplexing capabilities and simplifying sample preparation procedures.


New analytical formats are under development to allow multiplexed detection of foodborne pathogens, thus cutting assay times and costs and enabling large scale screening procedures. A variety of analytical strategies are being explored to reach this goal. This review covers the recent progresses, limitations and future challenges of these approaches


Food safety Pathogenic bacteria Multiplex assays Rapid assays Biosensors 


  1. 1.
    European Food Safety Authority, Tracing seeds, in particular fenugreek (Trigonella foenum-graecum) seeds, in relation to the Shiga toxin-producing E. coli (STEC) O104:H4 2011 outbreaks in Germany and France, EFSA-Q-2011-00817Google Scholar
  2. 2.
    Nugen SR, Baeumner AJ (2008) Trends and opportunities in food pathogen detection. Anal Bioanal Chem 391:451–454CrossRefGoogle Scholar
  3. 3.
    Pedrero M, Campuzano S, Pingarrón JM (2009) Electroanalytical Sensors and devices for multiplexed detection of foodborne pathogen microorganisms. Sensors 9:5503–5520CrossRefGoogle Scholar
  4. 4.
    Byrne B, Stack E, Gilmartin N, O’Kennedy R (2009) Antibody-based sensors: principles, problems and potential for detection of pathogens and associated toxins. Sensors 9:4407–4445CrossRefGoogle Scholar
  5. 5.
    Raz SR, Haasnoot W (2011) Multiplex bioanalytical methods for food and environmental monitoring. Trends Anal Chem 30:1526–1537CrossRefGoogle Scholar
  6. 6.
    Gehring AG, Tu SI (2011) High-throughput biosensors for multiplexed food-borne pathogen detection. Annu Rev Anal Chem 4:151–172CrossRefGoogle Scholar
  7. 7.
    Stevens KA, Jaykus LA (2004) Bacterial separation and concentration from complex sample matrices: A review. Crit Rev Microbiol 30:7–24CrossRefGoogle Scholar
  8. 8.
    Cenciarini-Borde C, Courtois S, La Scola B (2009) Nucleic acids as viability markers for bacteria detection using molecular tools. Future Microbiol 4:45–64CrossRefGoogle Scholar
  9. 9.
    Wang L, Mustapha A (2010) EMA-real-time PCR as a reliable method for detection of viable Salmonella in chicken and eggs. J Food Sci 75:134–139CrossRefGoogle Scholar
  10. 10.
    He Y, Chen CY (2010) Quantitative analysis of viable, stressed and dead cells of Campylobacter jejuni strain 81–176. Food Microbiol 27:439–446CrossRefGoogle Scholar
  11. 11.
    Espiñeira M, Atanassova M, Vieites JM, Santaclara FJ (2010) Validation of a method for the detection of five species, serogroups, biotypes and virulence factors of Vibrio by multiplex PCR in fish and seafood. Food Microbiol 27:122–131CrossRefGoogle Scholar
  12. 12.
    Oliwa-Stasiak K, Molnar CI, Arshak K, Bartoszcze M, Adley CC (2010) Development of a PCR assay for identification of the Bacillus cereus group species. J Appl Microbiol 108:266–273CrossRefGoogle Scholar
  13. 13.
    Kawasaki S, Fratamico PM, Horikoshi N, Okada Y, Takeshita K, Sameshima T, Kawamoto S (2009) Evaluation of a multiplex PCR system for simultaneous detection of Salmonella spp., Listeria monocytogenes, and Escherichia coli O157:H7 in foods and in food subjected to freezing. Foodborne Pathog Dis 6:81–89CrossRefGoogle Scholar
  14. 14.
    Yuan Y, Xu W, Zhai Z, Shi H, Luo Y, Chen Z, Huang K (2009) Universal primer-multiplex PCR approach for simultaneous detection of Escherichia coli, Listeria monocytogenes, and Salmonella spp. in food samples. J Food Sci 74:446–452CrossRefGoogle Scholar
  15. 15.
    Oh MH, Paek SH, Shin GW, Kim HY, Jung GY, Oh S (2009) Simultaneous identification of seven foodborne pathogens and Escherichia coli (pathogenic and nonpathogenic) using capillary electrophoresis-based single-strand conformation polymorphism coupled with multiplex PCR. J Food Prot 72:1262–1266Google Scholar
  16. 16.
    Li Y, Li Y, Zheng B, Qu L, Li C (2009) Determination of foodborne pathogenic bacteria by multiplex PCR-microchip capillary electrophoresis with genetic algorithm-support vector regression optimization. Anal Chim Acta 643:100–107CrossRefGoogle Scholar
  17. 17.
    Chakravorty S, Helb D, Burday M, Connell N, Alland D (2007) A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J Microbiol Methods 69:330–339CrossRefGoogle Scholar
  18. 18.
    Gilbert C, Winters D, O’Leary A, Slavik M (2003) Development of a triplex PCR assay for the specific detection of Campylobacter jejuni, Salmonella spp., and Escherichia coli O157:H7. Mol Cell Probes 17:135–138CrossRefGoogle Scholar
  19. 19.
    Kim JS, Lee GG, Park JS, Jung YH, Kwak HS, Kim SB, Nam YS, Kwon ST (2007) A novel multiplex PCR assay for rapid and simultaneous detection of five pathogenic bacteria: Escherichia coli O157:H7, Salmonella, Staphylococcus aureus, Listeria monocytogenes, and Vibrio parahaemolyticus. J Food Prot 70:1656–1662Google Scholar
  20. 20.
    Lei I, Roffey P, Blanchard C, Gu K (2008) Development of a multiplex PCR method for the detection of six common foodborne pathogens. J Food Drug Anal 16:37–43Google Scholar
  21. 21.
    Zhang C, Wang H, Xing D (2011) Multichannel oscillatory-flow multiplex PCR microfluidics for high-throughput and fast detection of foodborne bacterial pathogens. Biomed Microdevices 13:885–897CrossRefGoogle Scholar
  22. 22.
    Wang H, Zhang C, Xing D (2011) Simultaneous detection of Salmonella enterica, Escherichia coli O157:H7, and Listeria monocytogenes using oscillatory-flow multiplex PCR. Microchim Acta 173:503–512CrossRefGoogle Scholar
  23. 23.
    Kawasaki S, Fratamico PM, Horikoshi N, Okada Y, Takeshita K, Sameshima T, Kawamoto S (2010) Multiplex real-time polymerase chain reaction assay for simultaneous detection and quantification of Salmonella species, Listeria monocytogenes, and Escherichia coli O157:H7 in ground pork samples. Foodborne Pathog Dis 7:549–554CrossRefGoogle Scholar
  24. 24.
    Suo B, He Y, Tu SI, Shi X (2010) A multiplex real-time polymerase chain reaction for simultaneous detection of Salmonella spp., Escherichia coli O157, and Listeria monocytogenes in meat products. Foodborne Pathog Dis 76:619–628CrossRefGoogle Scholar
  25. 25.
    Amoako KK, Goji N, Macmillan T, Said KB, Druhan S, Tanaka E, Thomas EG (2010) Development of multitarget real-time PCR for the rapid, specific, and sensitive detection of Yersinia pestis in milk and ground beef. J Food Prot 73:18–25Google Scholar
  26. 26.
    He YP, Yao XM, Gunther NW, Xie YP, Tu SI, Shi XM (2010) Simultaneous detection and differentiation of Campylobacter jejuni, C. coli, and C. lari in chickens using a multiplex real-time PCR assay. Food Anal Methods 4:321–329CrossRefGoogle Scholar
  27. 27.
    McCarthy N, Reen FJ, Buckley JF, Frye JG, Boyd EF, Gilroy D (2009) Sensitive and rapid molecular detection assays for Salmonella enterica serovars Typhimurium and Heidelberg. J Food Prot 72:2350–2357Google Scholar
  28. 28.
    Postollec F, Falentin H, Pavan S, Combrisson J, Sohier D (2011) Recent advances in quantitative PCR (qPCR) applications in food microbiology. Food Microbiol 28:848–861CrossRefGoogle Scholar
  29. 29.
    Cheng JC, Huang CL, Lin CC, Chen CC, Chang YC, Chang SS et al (2006) Rapid detection and identification of clinically important bacteria by high-resolution melting analysis after broad-range ribosomal RNA real-time PCR. Clin Chem 52:1997–2004CrossRefGoogle Scholar
  30. 30.
    Huang Q, Hu Q, Li Q (2007) Identification of 8 foodborne pathogens by multicolor combinational probe coding technology in a single real-time PCR. Clin Chem 53:1741–1748CrossRefGoogle Scholar
  31. 31.
    Suo B, He Y, Paoli G, Gehring A, Tu SI, Shi X (2010) Development of an oligonucleotide-based microarray to detect multiple foodborne pathogens. Mol Cell Probes 24:77–86CrossRefGoogle Scholar
  32. 32.
    Hu Y, Liu J, Xia D, Chen S (2011) Simultaneous analysis of foodborne pathogenic bacteria by an oligonucleotide microarray assay. J Basic Microbiol 52:27–34Google Scholar
  33. 33.
    Fang H, Xu J, Ding D, Jackson SA, Patel IR, Frye JG, Zou W, Nayak R, Foley S, Chen J, Su Z, Ye Y, Turner S, Harris S, Zhou G, Cerniglia C, Tong W (2011) An FDA bioinformatics tool for microbial genomics research on molecular characterization of bacterial foodborne pathogens using microarrays. BMC Bioinform 11(Suppl 6):S4CrossRefGoogle Scholar
  34. 34.
    Zou W, Al-Khaldi SF, Branham WS, Han T, Fuscoe JC, Han J, Foley SL, Xu J, Fang H, Cerniglia CE, Nayak R (2011) Microarray analysis of virulence gene profiles in Salmonella serovars from food/food animal environment. J Infect Dev Ctries 5:94–105Google Scholar
  35. 35.
    Zeng X, Shen Z, Mernaugh R (2011) Recombinant antibodies and their use in biosensors. Anal Bioanal Chem 402:3027–3038Google Scholar
  36. 36.
    Hamula CLA, Zhang H, Li F, Wang Z, Le XC, Li XF (2011) Selection and analytical applications of aptamers binding microbial pathogens. Trends Anal Chem 30:1587–1597CrossRefGoogle Scholar
  37. 37.
    Zhao Y, Ye M, Chao Q, Jia N, Ge Y, Shen H (2009) Simultaneous detection of multifood-borne pathogenic bacteria based on functionalized quantum dots coupled with immunomagnetic separation in food samples. J Agric Food Chem 57:517–524CrossRefGoogle Scholar
  38. 38.
    Wang H, Li Y, Wang A, Slavik M (2011) Rapid, sensitive, and simultaneous detection of three foodborne pathogens using magnetic nanobead-based immunoseparation and quantum dot-based multiplex immunoassay. J Food Prot 74:2039–2047CrossRefGoogle Scholar
  39. 39.
    Dudak FC, Boyaci IH (2009) Multiplex detection of Escherichia coli and Salmonella enteritidis by using quantum dot-labeled antibodies. J Rapid Meth Automat Microbiol 17:315–327CrossRefGoogle Scholar
  40. 40.
    Miao T, Wang Z, Li S, Wang X (2011) Sensitive fluorescent detection of Staphylococcus aureus using nanogold linked CdTe nanocrystals as signal amplification labels. Microchim Acta 172:431–437CrossRefGoogle Scholar
  41. 41.
    Wang L, Zhao W, O’Donoghue MB, Tan W (2007) Fluorescent nanoparticles for multiplexed bacteria monitoring. Bioconjug Chem 18:297–301CrossRefGoogle Scholar
  42. 42.
    Magliulo M, Simoni P, Guardigli M, Michelini E, Luciani M, Lelli R, Roda A (2007) A rapid multiplexed chemiluminescent immunoassay for the detection of Escherichia coli O157:H7, Yersinia enterocolitica, Salmonella typhimurium, and Listeria monocytogenes pathogen bacteria. J Agric Food Chem 55:4933–4939CrossRefGoogle Scholar
  43. 43.
    Roda A, Mirasoli M, Venturoli S, Cricca M, Bonvicini F, Baraldini M, Pasini P, Zerbini M, Musiani M (2002) Microtiter format for simultaneous multianalyte detection and development of a PCR chemiluminescent enzyme immunoassay for typing human papillomavirus DNAs. Clin Chem 48:1654–1660Google Scholar
  44. 44.
    Gehring AG, Albin DM, Reed SA, Tu S, Brewster JD (2008) An antibody microarray, in multiwell plate format, for multiplex screening of foodborne pathogenic bacteria and biomolecules. Anal Bioanal Chem 391:497–506CrossRefGoogle Scholar
  45. 45.
    Leach KM, Stroot JM, Lim DV (2010) Same-day detection of Escherichia coli O157:H7 from spinach by using electrochemiluminescent and cytometric bead array biosensors. Appl Environ Microbiol 76:8044–8052CrossRefGoogle Scholar
  46. 46.
    Wolter A, Niessner R, Seidel M (2008) Detection of Escherichia coli O157:H7, Salmonella typhimurium, and Legionella pneumophila in water using a flow-through chemiluminescence microarray readout system. Anal Chem 80:5854–5863CrossRefGoogle Scholar
  47. 47.
    Karsunke XYZ, Niessner R, Seidel M (2009) Development of a multichannel flow-through chemiluminescence microarray chip for parallel calibration and detection of pathogenic bacteria. Anal Bioanal Chem 395:1623–1630CrossRefGoogle Scholar
  48. 48.
    Roda A, Mirasoli M, Dolci LS, Buragina A, Bonvicini F, Simoni P, Guardigli M (2011) Portable device based on chemiluminescence lensless imaging for personalized diagnostics through multiplex bioanalysis. Anal Chem 83:3178–3185CrossRefGoogle Scholar
  49. 49.
    Park J, Park S, Kim Y-K (2010) Multiplex detection of pathogens using an immunochromatographic assay strip. Biochip J 4:305–312CrossRefGoogle Scholar
  50. 50.
    Karoonuthaisiri N, Charlermroj R, Uawisetwathana U, Luxananil P, Kirtikara K, Gajanandana O (2009) Development of antibody array for simultaneous detection of foodborne pathogens. Biosens Bioelectron 24:1641–1648CrossRefGoogle Scholar
  51. 51.
    Arora K, Chand S, Malhotra BD (2006) Recent developments in bio-molecular electronics techniques for food pathogens. Anal Chim Acta 568:259–274CrossRefGoogle Scholar
  52. 52.
    Velusamy V, Arshak K, Korostynska O, Oliwa K, Adley C (2010) An overview of foodborne pathogen detection: in the perspective of biosensors. Biotechnol Adv 28:232–254CrossRefGoogle Scholar
  53. 53.
    Lazcka O, Del Campo FJ, Muñoz FX (2007) Pathogen detection: a perspective of traditional methods and biosensors. Biosens Bioelectron 22:1205–1217CrossRefGoogle Scholar
  54. 54.
    Nayak M, Kotian A, Marathe S, Chakravortty D (2009) Detection of microorganisms using biosensors-a smarter way towards detection techniques. Biosens Bioelectron 25:661–667CrossRefGoogle Scholar
  55. 55.
    Farabullini F, Lucarelli F, Palchetti I, Marrazza G, Mascini M (2007) Disposable electrochemical genosensor for the simultaneous analysis of different bacterial food contaminants. Biosens Bioelectron 22:1544–1549CrossRefGoogle Scholar
  56. 56.
    Taylor AD, Ladd J, Yu QM, Chen SF, Homola J, Jiang SY (2006) Quantitative and simultaneous detection of four foodborne bacterial pathogens with a multi-channel SPR sensor. Biosens Bioelectron 22:752–758CrossRefGoogle Scholar
  57. 57.
    Zordan MD, Grafton MM, Acharya G, Reece LM, Cooper CL, Aronson AI, Park K, Leary JF (2009) Detection of pathogenic E. coli O157:H7 by a hybrid microfluidic SPR and molecular imaging cytometry device. Cytometry Part A 75:155–162CrossRefGoogle Scholar
  58. 58.
    Kang T, Yoo SM, Yoon I, Lee SY, Kim B (2010) Patterned multiplex pathogen DNA detection by Au particle-on-wire SERS sensor. Nano Lett 10:1189–1193CrossRefGoogle Scholar
  59. 59.
    Zelada-Guillén GA, Bhosale SV, Riu J, Rius FX (2010) Real-time potentiometric detection of bacteria in complex samples. Anal Chem 82:9254–9260CrossRefGoogle Scholar
  60. 60.
    Bai S, Zhao J, Zhang Y, Huang W, Xu S, Chen H, Fan LM, Chen Y, Deng XW (2010) Rapid and reliable detection of 11 food-borne pathogens using thin-film biosensor chips. Appl Microbiol Biotechnol 86:983–990CrossRefGoogle Scholar
  61. 61.
    Elsholz B, Nitsche A, Achenbach J, Ellerbrok H, Blohm L, Albers J, Pauli G, Hintsche R, Wörl R (2009) Electrical microarrays for highly sensitive detection of multiplex PCR products from biological agents. Biosens Bioelectron 24:1737–1743CrossRefGoogle Scholar
  62. 62.
    Pöhlman C, Wang Y, Humenik M, Heidenreich B, Gareis M, Sprinzl M (2009) Rapid, specific and sensitive electrochemical detection of foodborne bacteria. Biosens Bioelectron 24:2766–2771CrossRefGoogle Scholar
  63. 63.
    Hee PC, Pyo KJ, Wook LS, Li JN, Pil JY, Jun SS (2009) A direct, multiplex biosensor platform for pathogen detection based on cross-linked polydiacetylene (PDA) supramolecules. Adv Funct Mater 19:3703–3710CrossRefGoogle Scholar
  64. 64.
    Jin S-Q, Yin B-C, Ye B-C (2009) Multiplexed bead-based mesofluidic system for detection of food-borne pathogenic bacteria. Appl Environ Microbiol 75:6647–6654CrossRefGoogle Scholar
  65. 65.
    Goh YY, Ho B, Ding JL (2002) A novel fluorescent protein-based biosensor for gram-negative bacteria. Appl Environ Microbiol 68(12):6343–6352CrossRefGoogle Scholar
  66. 66.
    Ye J, Liu Y, Li Y (2002) A chemiluminescence fiber-optic biosensor coupled with immunomagnetic separation for rapid detection of E. coli O15: H7. Trans ASAE 45:473–478Google Scholar
  67. 67.
    Ligler FS, Sapsford KE, Golden JP, Shriver-Lake LC, Taitt CR, Dyer MA, Barone S, Myatt CJ (2007) The array biosensor: portable, automated systems. Anal Sci 23:5–10CrossRefGoogle Scholar
  68. 68.
    Massad-Ivanir N, Shtenberg G, Tzur A, Krepker M, Segal E (2001) Engineering nanostructured porous SiO2 surfaces for bacteria detection via direct-cell-capture. Anal Chem 83:3282–3289Google Scholar
  69. 69.
    Massad-Ivanir N, Shtenberg G, Segal E (2012) Advancing nanostructured porous si-based optical transducers for label free bacteria detection. Adv Exp Med Biol 733:37–45CrossRefGoogle Scholar
  70. 70.
    Janshoff A, Galla HJ, Steinem C (2000) Piezoelectric mass-sensing devices as biosensors-an alternative to optical biosensors? Angew Chem Int Ed 39:4004–4032Google Scholar
  71. 71.
    Serra B, Gamella M, Reviejo AJ, Pingarrón JM (2008) Lectin-modified piezoelectric biosensors for bacteria recognition and quantification. Anal Bioanal Chem 391:1853–1860CrossRefGoogle Scholar
  72. 72.
    Yang H, Li HP, Jiang XP (2008) Detection of foodborne pathogens using bioconjugated nanomaterials. Microfluidic Nanofluidic 5:571–583Google Scholar
  73. 73.
    Sanvicens N, Pastells C, Pascual N, Marco MP (2009) Nanoparticle-based biosensors for detection of pathogenic bacteria. Trends Anal Chem 28:1243–1252CrossRefGoogle Scholar
  74. 74.
    Vinayaka AC, Thakur MS (2010) Focus on quantum dots as potential fluorescent probes for monitoring food toxicants and foodborne pathogens. Anal Bioanal Chem 397:1445–1455CrossRefGoogle Scholar
  75. 75.
    Miranda OR, Li XN, Garcia-Gonzalez L, Zhu ZJ, Yan B, Bunz UHF, Rotello VM (2011) Colorimetric bacteria sensing using a supramolecular enzyme-nanoparticle biosensor. JACS 133:9650–9653CrossRefGoogle Scholar
  76. 76.
    Valdés MG, Valdés Gonzáles AC, García Calzón JA, Díaz-García ME (2009) Analytical nanotechnology for food analysis. Microchim Acta 166:1–19CrossRefGoogle Scholar
  77. 77.
    Chang HC (2007) Nanobead electrokinetics: the enabling microfluidic platform for rapid multi-target pathogen detection. AIChe J 53:2486–2492CrossRefGoogle Scholar
  78. 78.
    Siangproh W, Dungchai W, Rattanarat P, Chailapakul O (2011) Nanoparticle-based electrochemical detection in conventional and miniaturized systems and their bioanalytical applications: a review. Anal Chim Acta 690:10–25CrossRefGoogle Scholar
  79. 79.
    Petryayeva E, Krull UJ (2011) Localized surface plasmon resonance: nanostructures, bioassays and biosensing-A review. Anal Chim Acta 706:8–24CrossRefGoogle Scholar
  80. 80.
    Chen SH, Wu VCH, Chuang YC, Lin CS (2008) Using oligonucleotide-functionalized Au nanoparticles to rapidly detect foodborne pathogens on a piezoelectric biosensor. J Microbiol Methods 73:7–17CrossRefGoogle Scholar
  81. 81.
    Wang Y, Irudayaraj J (2010) Multifunctional magnetic–optical nanoparticle probes for simultaneous detection, separation, and thermal ablation of multiple pathogens. Small 6:283–289CrossRefGoogle Scholar
  82. 82.
    Wang Y, Ravindranath SP, Irudayaraj J (2011) Separation and detection of multiple pathogens in a food matrix by magnetic SERS nanoprobes. Anal Bioanal Chem 399:1271–1278CrossRefGoogle Scholar
  83. 83.
    Ravindranath SP, Wang Y, Irudayaraj J (2011) SERS driven cross-platform based multiplex pathogen detection. Sens Actuat B-Chem 152:183–190CrossRefGoogle Scholar
  84. 84.
    Jung JH, Kim G-Y, Seo TS (2011) An integrated passive micromixer–magnetic separation–capillary electrophoresis microdevice for rapid and multiplex pathogen detection at the single-cell level. Lab Chip 11:3465–3470CrossRefGoogle Scholar
  85. 85.
    Demirev PA, Fenselau C (2008) Mass spectrometry for rapid characterization of microorganisms. Annu Rev Anal Chem 1:71–93CrossRefGoogle Scholar
  86. 86.
    Wensing A, Gernold M, Geider K (2011) Detection of Erwinia species from the apple and pear flora by mass spectroscopy of whole cells and with novel PCR primers. J Appl Microbiol 112:147–158CrossRefGoogle Scholar
  87. 87.
    Sospedra I, Soler C, Mañes J, Soriano JM (2011) Analysis of staphylococcal Enterotoxin A in milk by matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Anal Bioanal Chem 400:1525–1531CrossRefGoogle Scholar
  88. 88.
    Böhme K, Fernández-No IC, Barros-Velázquez J, Gallardo JM, Cañas B, Calo-Mata P (2011) Rapid species identification of seafood spoilage and pathogenic Gram-positive bacteria by MALDI-TOF mass fingerprinting. Electrophoresis 32:2951–2965CrossRefGoogle Scholar
  89. 89.
    Dieckmann R, Helmuth R, Erhard M, Malorny B (2008) Rapid classification and identification of Salmonellae at the species and subspecies levels by whole-cell matrix-assisted laser desorption ionization–time of flight mass spectrometry. Appl Environ Microbiol 74:7767–7778CrossRefGoogle Scholar
  90. 90.
    Mazzeo MF, Sorrentino A, Gaita M, Cacace G, Di Stasio M, Facchiano A, Comi G, Malorni A, Siciliano RA (2006) Matrix-assisted laser desorption ionization–time of flight mass spectrometry for the discrimination of food-borne microorganisms. Appl Environ Microbiol 72:1180–1189CrossRefGoogle Scholar
  91. 91.
    Mandrel RE, Wachtelt MR (1999) Novel detection techniques for human contaminate poultry. Curr Opin Biotechnol 10:273–278CrossRefGoogle Scholar
  92. 92.
    Ochoa ML, Harrington PB (2005) Immunomagnetic isolation of enterohemorrhagic Escherichia coli O157:H7 from ground beef and identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and database searches. Anal Chem 77:5258–5267CrossRefGoogle Scholar
  93. 93.
    Sedo O, Sedlacek I, Zdrahal Z (2011) Sample preparation methods for MALDI-MS profiling of bacteria. Mass Spectrom Rev 30:417–434CrossRefGoogle Scholar
  94. 94.
    Madonna AJ, Basile F, Furlong E, Voorhees KJ (2001) Detection of bacteria from biological mixtures using immunomagnetic separation combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 15:1068–1074CrossRefGoogle Scholar
  95. 95.
    Reschiglian P, Zattoni A, Cinque L, Roda B (2004) Hollow-fiber flow field-flow fractionation for whole bacteria analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Chem 76:2103–2111CrossRefGoogle Scholar
  96. 96.
    Parisi D, Magliulo M, Nanni P, Casale M, Forina M, Roda A (2008) Analysis and classification of bacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and a chemometric approach. Anal Bioanal Chem 391:2127–2134CrossRefGoogle Scholar
  97. 97.
    Casalinuovo IA, Di Pierro D, Coletta M, Di Francesco P (2006) Application of electronic noses for disease diagnosis and food spoilage detection. Sensors 6:1428–1439CrossRefGoogle Scholar
  98. 98.
    Wilson AD, Baietto M (2011) Advances in electronic-nose technologies developed for biomedical applications. Sensors 11:1105–1176CrossRefGoogle Scholar
  99. 99.
    Green GC, Chan AD, Goubran RA (2006) An investigation into the suitability of using three electronic nose instruments for the detection and discrimination of bacteria types. Conf Proc IEEE Eng Med Biol Soc 1:1850–1853Google Scholar
  100. 100.
    Green GC, Chan AD, Hanhong D, Min L (2011) Using a metal oxide sensor (MOS)-based electronic nose for discrimination of bacteria based on individual colonies in suspension. Sens Actuat B-Chem 152:21–28Google Scholar
  101. 101.
    McEntegart CM, Penrose WR, Strathmann S, Stetter JR (2000) Detection and discrimination of coliform bacteria with gas sensor arrays. Sens Actuat B-Chem 70:170–176CrossRefGoogle Scholar
  102. 102.
    Walter A, März A, Schumacher W, Rösch P, Popp J (2011) Towards a fast, high specific and reliable discrimination of bacteria on strain level by means of SERS in a microfluidic device. Lab Chip 11:1013–1021CrossRefGoogle Scholar
  103. 103.
    Davis R, Mauer LJ (2011) Subtyping of Listeria monocytogenes at the haplotype level by Fourier transform infrared (FT-IR) spectroscopy and multivariate statistical analysis. Int J Food Microbiol 150:140–149CrossRefGoogle Scholar
  104. 104.
    Davis R, Burgula Y, Deering A, Irudayaraj J, Reuhs BL, Mauer LJ (2010) Detection and differentiation of live and heat-treated Salmonella enterica serovars inoculated onto chicken breast using Fourier transform infrared (FT-IR) spectroscopy. J Appl Microbiol 109:2019–2031CrossRefGoogle Scholar
  105. 105.
    Nicolaou N, Xu Y, Goodacre R (2011) Fourier transform infrared and Raman spectroscopies for the rapid detection, enumeration, and growth interaction of the bacteria Staphylococcus aureus and Lactococcus lactis ssp. cremoris in milk. Anal Chem 83:5681–5687CrossRefGoogle Scholar
  106. 106.
    Cheng S, Wang Z, Ge S, Wang H, He P, Fang Y, Wang Q (2012) Rapid separation of four probiotic bacteria in mixed samples using microchip electrophoresis with laser-induced fluorescence detection. Microchim Acta 176:295–301CrossRefGoogle Scholar
  107. 107.
    Szumski M, Kłodzińska E, Buszewski B (2009) Application of a fluorescence stereomicroscope as an in-line detection unit for electrophoretic separation of bacteria. Microchim Acta 164:287–291CrossRefGoogle Scholar
  108. 108.
    Buszewski B, Szumski M, Kłodzinska E, Dahm H (2003) Separation of bacteria by capillary electrophoresis. J Sep Sci 26:1045–1049CrossRefGoogle Scholar
  109. 109.
    Armstrong DW, Schulte G, Schneiderheinze JM, Westenberg DJ (1999) Separating microbes in the manner of molecules. 1. Capillary electrokinetic approaches. Anal Chem 71:5465–5469CrossRefGoogle Scholar
  110. 110.
    Armstrong DW, Schneiderheinze JM (2000) Rapid identification of the bacterial pathogens responsible for urinary tract infections using direct injection CE. Anal Chem 72:4474–4476CrossRefGoogle Scholar
  111. 111.
    Gagnon ZR (2011) Cellular dielectrophoresis: applications to the characterization, manipulation, separation and patterning of cells. Electrophoresis 32:2466–2487CrossRefGoogle Scholar
  112. 112.
    Karo O, Wahl A, Nicol SB, Brachert J, Lambrecht B, Spengler HP, Nauwelaers F, Schmidt M, Schneider CK, Müller TH, Montag T (2008) Bacteria detection by flow cytometry. Clin Chem Lab Med 46:947–953CrossRefGoogle Scholar
  113. 113.
    Dunbar SA, Vander Zee CA, Oliver KG, Karem KL, Jacobson JW (2003) Quantitative, multiplexed detection of bacterial pathogens: DNA and protein applications of the Luminex LabMAP system. J Microbiol Methods 53:245–252CrossRefGoogle Scholar
  114. 114.
    Dunbar SA (2006) Applications of Luminex xMAP technology for rapid, high-throughput multiplexed nucleic acid detection. Clin Chim Acta 363:71–82CrossRefGoogle Scholar
  115. 115.
    Kim JS, Anderson GP, Erickson JS, Golden JP, Nasir M, Ligler FS (2009) Multiplexed detection of bacteria and toxins using a microflow cytometer. Anal Chem 81:5426–5432CrossRefGoogle Scholar
  116. 116.
    Thangawng AL, Kim JS, Golden JP, Anderson GP, Robertson KL, Low V, Ligler FS (2010) A hard microflow cytometer using groove-generated sheath flow for multiplexed bead and cell assays their. Anal Bioanal Chem 398:1871–1881CrossRefGoogle Scholar
  117. 117.
    Kim JS, Ligler FS (2010) Utilization of microparticles in next-generation assays for microflow cytometers. Anal Bioanal Chem 398:2373–2382CrossRefGoogle Scholar
  118. 118.
    Giddings JC (1993) Field-flow fractionation: analysis of macromolecular, colloidal, and particulate materials. Science 260:1456–1465CrossRefGoogle Scholar
  119. 119.
    Schimpf ME (2000) Field-flow fractionation handbook. In: Shimpf ME, Caldwell KC, Giddings JC (eds) Wiley-Interscience, New YorkGoogle Scholar
  120. 120.
    Saenton S, Lee H, Gao YS, Ranville JF, Williams SKR (2000) Evaluation of different field flow fractionation techniques for separating bacteria. Sep Sci Technol 35:1761–1775CrossRefGoogle Scholar
  121. 121.
    Reschiglian P, Roda B, Zattoni A, Min BR, Moon MH (2002) High performance, disposable hollow fiber flow field-flow fractionation for bacteria and cells. First application to deactivated Vibrio cholerae. J Sep Sci 25:490–498CrossRefGoogle Scholar
  122. 122.
    Reschiglian P, Zattoni A, Roda B, Cinque L, Melucci D, Min BR, Moon MH (2003) Hyperlayer hollow-fiber flow field-flow fractionation of cells. J Chromatogr A 985:519–529CrossRefGoogle Scholar
  123. 123.
    Nilsson M, Birnbaum S, Wahlund KG (1996) Determination of relative amounts of ribosome and subunits in Escherichia coli using asymmetrical flow field-flow fractionation. J Biochem Biophys Methods 33:9–23CrossRefGoogle Scholar
  124. 124.
    Janča J, Halabalová V, Růžička J (2010) Role of the shape of various bacteria in their separation by Microthermal Field-Flow Fractionation. J Chromatogr A 1217:8062–8071CrossRefGoogle Scholar
  125. 125.
    Reschiglian P, Zattoni A, Roda B, Michelini E, Roda A (2005) Field-flow fractionation and biotechnology. Trends Biotechnol 23:475–483CrossRefGoogle Scholar
  126. 126.
    Roda B, Zattoni A, Reschiglian P, Moon MH, Mirasoli M, Michelini E, Roda A (2009) Field-flow fractionation in bioanalysis: a review of recent trends. Anal Chim Acta 635:132–143CrossRefGoogle Scholar
  127. 127.
    Reschiglian P, Zattoni A, Cinque L, Roda B, Dal Piaz F, Roda A, Moon MH, Min BR (2004) Hollow-fiber flow field-flow fractionation for whole bacteria analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Chem 76:2103–2111CrossRefGoogle Scholar
  128. 128.
    Magliulo M, Roda B, Zattoni A, Michelini E, Luciani M, Lelli R, Reschiglian P, Roda A (2006) An innovative, flow-assisted, noncompetitive chemiluminescent immunoassay for the detection of pathogenic bacteria. Clin Chem 52:2151–2155CrossRefGoogle Scholar
  129. 129.
    Roda A, Mirasoli M, Roda B, Reschiglian P (2010) Flow-assisted analysis. In: Roda A (ed) Chemiluminescence and bioluminescence: past, present and future. Royal Society of Chemistry, Cambridge, pp 191–226Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Aldo Roda
    • 1
    • 2
    Email author
  • Mara Mirasoli
    • 1
    • 2
  • Barbara Roda
    • 3
  • Francesca Bonvicini
    • 4
  • Carolina Colliva
    • 1
  • Pierluigi Reschiglian
    • 3
  1. 1.Analytical and Bioanalytical Chemistry Laboratory, Department of Pharmaceutical SciencesUniversity of BolognaBolognaItaly
  2. 2.National Institute of Biostructure and Biosystems, N.I.B.BInteruniversity ConsortiumRomeItaly
  3. 3.Department of Chemistry “G. Ciamician”University of BolognaBolognaItaly
  4. 4.Microbiology Section, Department of Haematology and Oncological Sciences “L. e A. Seragnoli”University of BolognaBolognaItaly

Personalised recommendations