Advertisement

Microchimica Acta

, Volume 178, Issue 1–2, pp 61–70 | Cite as

Flow injection on-line minicolumn preconcentration and determination of trace copper ions using an alumina/titanium oxide grafted silica matrix and FAAS

  • Giovana F. Lima
  • Maikow O. Ohara
  • Débora N. Clausen
  • Danielle R. Nascimento
  • Emerson S. Ribeiro
  • Mariana G. Segatelli
  • Marcos A. Bezerra
  • César R. T. Tarley
Original Paper

Abstract

We describe the analytical performance of a hybrid material composed of SiO2, Al2O3 and TiO2. It was prepared by a sol–gel process and can act as an adsorbent in the continuous-flow enrichment of copper. A minicolumn was packed with the material, copper ions are adsorbed at pH 9.13, then eluted with 1.0 mol L−1 nitric acid, and determined by FAAS. The material was characterized by infrared spectroscopy, scanning electron and energy dispersive spectroscopy, energy dispersive X-ray fluorescence analysis, powder X-ray diffraction, and specific surface area analysis. No significant interference was observed for most ions in up to copper/interferent ratios of 1:100 and of 1:500 in case of Ca(II), Ba(II), and Mg(II). The breakthrough capacity is 1.4 mg g−1 under dynamic conditions. The limits of detection and of quantification are 0.50 and 1.4 μg L−1, respectively, and the calibration plot is linear in the range from 5.0 to 245.0 μg L−1 (r = 0.999). The relative standard deviation is 3.20 (for n = 7 and at a Cu(II) concentration of 10 μg L−1). The method was applied to the determination of trace copper ions in water, vegetable and alcohol fuel samples.

Figure

We describe the analytical performance of the hybrid material composed of SiO2, Al2O3 and TiO2. It was prepared by a sol–gel process and can act as an adsorbent in the continuous-flow enrichment of copper. The method was applied to the determination of trace copper ions in water, vegetable and alcohol fuel samples.

Keywords

Preconcentration Copper Silica/Alumina/Titanium Doehlert design Water Alcohol fuel 

Notes

Acknowledgements

The authors would like to thank the CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), the CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), the FAPERJ (Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro), the UFRJ (Universidade Federal do Rio de Janeiro), the Parana Araucaria Foundation (Fundação Araucária do Paraná), the FAEPE-UEL, and the INCT for Bioanalytics (Instituto Nacional de Ciência e Tecnologia de Bioanalítica) for their financial support and fellowships.

Supplementary material

604_2012_807_MOESM1_ESM.doc (421 kb)
ESM 1 (DOC 421 kb)

References

  1. 1.
    Escudero LA, Cerutti S, Olsina RA, Salonia JA, Gasquez J (2010) Factorial Design of experimental variables in the on-line separation/preconcentration of copper in water samples using solid phase extraction and ICP-OES determination. J Hazard Mater 183:218–223. doi: 10.1016/j.jhazmat.2010.07.014 CrossRefGoogle Scholar
  2. 2.
    Dieter HH, Bayer TA, Multhaup G (2005) Environmental copper and manganese in the pathophysiology of neurologic diseases (Alzheimer’s disease and Manganism). Acta Hydroch Hydrob 33:72–78. doi: 10.1002/aheh.200400556 CrossRefGoogle Scholar
  3. 3.
    CONAMA (2005) National Council for the Environment. Resolution Number 357, March, 17. http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=459.Accessed 03 December 2011
  4. 4.
    Yebra-Biurrun MC, Carro-Mariño M (2010) Flow injection flame atomic absorption determination of Cu, Mn and Zn partitioning in seawater by on-line room temperature sonolysis and minicolumn chelating resin methodology. Talanta 83:425–430. doi: 10.1016/j.talanta.2010.09.045 CrossRefGoogle Scholar
  5. 5.
    Liang P, Yang J (2010) Cloud point extraction preconcentration and spectrophotometric determination of copper in food and water samples using amino acid as the complexing agent. J Food Comp Anal 23:95–99. doi: 10.1016/j.jfca.2009.01.015 CrossRefGoogle Scholar
  6. 6.
    Chamjangali MA, Bagherian G, Mokhlesian A, Bahramian B (2011) Synthesis and application of chloromethylated polystyrene modified with 1-phenyl-1,2-propanedione-2-oxime thiosemicarbazone (PPDOT) as a new sorbent for the on-line preconcentration and determination of copper in water, soil, and food samples by FAAS. J Hazard Mater 192:1641–1649. doi: 10.1016/j.jhazmat.2011.06.093 CrossRefGoogle Scholar
  7. 7.
    Ferreira SLC, Bezerra MA, Santos WNL, Neto BB (2003) Application of Doehlert designs for optimisation of an on-line preconcentration system for copper determination by flame atomic absorption spectrometry. Talanta 61:295–303. doi: 10.1016/S0039-9140(03)00277-7 CrossRefGoogle Scholar
  8. 8.
    Citak D, Tuzen M (2010) A novel preconcentration procedure using cloud point extraction for determination of lead, cobalt and copper in water and food samples using flame atomic absorption spectrometry. Food Chem Toxicol 48:1399–1404. doi: 10.1016/j.fct.2010.03.008 CrossRefGoogle Scholar
  9. 9.
    Buke B, Divrikli U, Soylak M, Elci L (2009) On-line preconcentration of copper as its pyrocatechol violet complex on Chromosorb 105 for flame atomic absorption spectrometric determinations. J Hazard Mater 163:1298–1302. doi: 10.1016/j.jhazmat.2008.07.096 CrossRefGoogle Scholar
  10. 10.
    Da Silva EL, Ganzarolli EM, Carasek E (2004) Use of Nb2O5-SiO2 in an automated on-line preconcentration system for determination of copper and cadmium by FAAS. Talanta 63:727–733. doi: 10.1016/j.talanta.2003.09.014 Google Scholar
  11. 11.
    Da Silva EL, Martins AO, Valentini A, Fávere VT, Carasek E (2004) Application of sílica gel organofunctionalized with 3(1-imidazolyl)propyl in an on-line preconcentration system for the determination of copper by FAAS. Talanta 64:181–189. doi: 10.1016/j.talanta.2004.02.003 CrossRefGoogle Scholar
  12. 12.
    Ngeontae W, Aeungmaitrepirom W, Tuntulani T, Imyim A (2009) Highly selective preconcentration of Cu(II) from seawater and water samples using amidoamidoxime silica. Talanta 78:1004–1010. doi: 10.1016/j.talanta.2009.01.017 CrossRefGoogle Scholar
  13. 13.
    Yu H, Song H, Chen M (2011) Dithizone immobilized silica gel on-line preconcentration of trace copper with detection by flame atomic absorption spectrometry. Talanta 85:625–630. doi: 10.1016/j.talanta.2011.04.039 CrossRefGoogle Scholar
  14. 14.
    Cui Y, Chang X, Zhu X, Luo H, Hu Z, Zou X, He Q (2007) Chemically modified silica gel with p-dimethylaminobenzaldehyde for selective solid-phase extraction and preconcentration of Cr(III), Cu(II), Ni(II), Pb(II) and Zn(II) by ICP-OES. Microchem J 87:20–26. doi: 10.1016/j.microc.2007.04.004 CrossRefGoogle Scholar
  15. 15.
    He Q, Chang X, Huang X, Hu Z (2008) Determination of trace elements in food samples by ICP-AES after preconcentration with p-toluenesulfonylamide immobilized on silica gel and nanometer SiO2. Microchim Acta 160:147–152. doi: 10.1007/s00604-007-0823-y CrossRefGoogle Scholar
  16. 16.
    Ávila TC, Segatelli MG, Beijo LA, Tarley CRT (2010) Emprego de sílica gel organicamente modificada e impressa ionicamente para pré-concentração seletiva on-line de íons cobre. Quim Nova 33:301–308. doi: org/10.1590/S0100-40422010000200014 CrossRefGoogle Scholar
  17. 17.
    Zheng H, Gao X, Song L, Guo H, Yang S, Chang X (2011) Preconcentration of trace aluminum (III) ion using a nanometer-sized TiO2-silica composite modified with 4-aminophenylarsonic acid, and its determination by ICP-OES. Microchim Acta 175:225–231. doi: 10.1007/s00604-011-0667-3 CrossRefGoogle Scholar
  18. 18.
    Tarley CRT, Ávila TC, Segatelli MG, Lima GF, Peregrino GS, Scheeren CW, Dias SLP, Ribeiro ES (2010) Silica-Alumina-Niobia (SiO2/Al2O3/Nb2O5) matrix obtained by the sol–gel processing method: new material for on-line extraction of zinc ions. J Braz Chem Soc 21:1106–1116. doi: org/10.1590/S0103-50532010000600021 CrossRefGoogle Scholar
  19. 19.
    Kubota LT, Gushikem Y, Moreira JC (1991) Adsorption of chromium(VI) by titanium(IV) oxide coated on a silica gel surface. The Analyst 116:281–283. doi: 10.1039/AN9911600281 CrossRefGoogle Scholar
  20. 20.
    Moreau JJE, Man MWC (1998) The design of selective catalysts from hydrid silica-based materials. Coord Chem Rev 178:1073–1084. doi: 10.1016/S0010-8545(98)00156-8 CrossRefGoogle Scholar
  21. 21.
    Oliveira FM, Somera BF, Corazza MZ, Yabe MJS, Segatelli MG, Ribeiro ES, Lima EC, Dias SLP, Tarley CRT (2011) Cellulose microfiber functionalized with N,N_-bis (2-aminoethyl)-1,2-ethanediamine as a solid sorbent for the fast preconcentration of Cd(II) in flow system analysis. Talanta 85:2417–2424. doi: 10.1016/j.talanta.2011.07.088 CrossRefGoogle Scholar
  22. 22.
    Bezerra MA, Castro JT, Macedo RC, Silva DG (2010) Use of constrained mixture design for optimization of method for determination of zinc and manganese in tea leaves employing slurry sampling. Anal Chim Acta 670:33–38. doi: 10.1016/j.aca.2010.04.063 CrossRefGoogle Scholar
  23. 23.
    Reed C, Lee YK, Oyama ST (2006) Structure and oxidation state of silica-supported manganese oxide catalysts and reactivity for acetone oxidation with ozone. J Phys Chem B 110:4207–4216. doi: 10.1021/jp054288w CrossRefGoogle Scholar
  24. 24.
    Wan GF, Dua AJ, Zhao Z, Jiang GY, Zhang DQ, Li RL, Dou T, Chung KH (2009) Al2O3 − TiO2/Al2O3 − TiO2 − SiO2 Composite-supported bimetallic Pt − Pd catalysts for the hydrodearomatization and hydrodesulfurization of diesel fuel. Energy & Fuels 23:81–85. doi: 10.1021/ef8006905 CrossRefGoogle Scholar
  25. 25.
    Aronne A, Marenna E, Califano V, Fanelli E, Pernice P, Trifuoggi M, Vergara A (2007) Sol–gel synthesis and structural characterization of niobium-silicon mixed-oxide nanocomposites. J Sol–gel. Sci Technol 43:193–204. doi: 10.1007/s10971-007-1563-5 Google Scholar
  26. 26.
    Kawano Y, Denofre S, Gushikem Y (1994) Raman and infrared spectra of silica gel and niobium(V) oxide grafted on silica gel surface and their dependence on pretreatment temperatures. Vib Spectrosc 7:293–302. doi: 10.1016/0924-2031(94)85019-4 CrossRefGoogle Scholar
  27. 27.
    Minor-Pérez E, Mendoza-Serna R, Méndez-Vivar J, Pless RC, Quintana-Zavala D, Torres-Robles (2006) Preparation and characterization of multicomponent porous materials prepared by the sol–gel process. J Porous Mater 13:13–19. doi: 10.1007/s10934-006-5480-8 CrossRefGoogle Scholar
  28. 28.
    Long GL, Winefordner JD (1983) Limit of detection. A closer look at the IUPAC definition. Anal Chem 55:712A–724A. doi: 10.1007/s00216-010-3638-3 CrossRefGoogle Scholar
  29. 29.
    Fang Z (1993) Flow injection separation and preconcentration. VCH, Weinheim, GermanyGoogle Scholar
  30. 30.
    Saraçoglu S, Elçi L (2002) Column solid-phase extraction with Chromosorb-102 resin and determination of trace elements in water and sediment samples by flame atomic absorption spectrometry. Anal Chim Acta 452:77–83. doi:http://dx.doi.org/10.1016/S0003-2670(01)01425-8
  31. 31.
    Ramesh A, Mohan KR, Seshaiah K (2002) Preconcentration of trace metals on Amberlite XAD-4 resin coated with dithiocarbamates and determination by inductively coupled plasma-atomic emission spectrometry in saline matrices. Talanta 57:243–252. doi: 10.1016/S0039-9140(02)00033-4 CrossRefGoogle Scholar
  32. 32.
    Nie R, Chang X, He Q, Hu Z, Li Z (2009) Preparation of p-tert[(dimethylamino)methyl]-calix[4]arene functionalized aminopropylpolysiloxane resin for selective solid-phase extraction and preconcentration of metal ions. J Hazard Mater 169:203–209. doi: 10.1016/j.jhazmat.2009.03.084 CrossRefGoogle Scholar
  33. 33.
    Casto MTPO, Baccan N (2005) Application of factorial design in optimization of preconcentration procedure for copper determination in soft drink by flame atomic absorption spectrometry. Talanta 65:1264–126. doi: 10.1016/j.talanta.2004.09.002 CrossRefGoogle Scholar
  34. 34.
    Lima GF, Souza PMJ, Segatelli MG, Luccas PO, Tarley CRT (2010) Spectrophotometric flow-injection system using multiwalled carbon nanotubes as solid preconcentrator for copper monitoring in water samples. In: Environanotechnology, 1rd edn. Elsevier, pp 177–198Google Scholar
  35. 35.
    Brazil (Agência Nacional do Petróleo): Portaria no.2 of January 16, 2002Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Giovana F. Lima
    • 1
    • 2
  • Maikow O. Ohara
    • 3
  • Débora N. Clausen
    • 3
  • Danielle R. Nascimento
    • 4
  • Emerson S. Ribeiro
    • 4
  • Mariana G. Segatelli
    • 3
  • Marcos A. Bezerra
    • 5
  • César R. T. Tarley
    • 1
    • 2
    • 3
  1. 1.Programa de Pós-Graduação em Química da Universidade Federal de Uberlândia (UFU)UberlândiaBrazil
  2. 2.Instituto Nacional de Ciência e Tecnologia (INCT) de BioanalíticaUniversidade Estadual de Campinas (UNICAMP)CampinasBrazil
  3. 3.Departamento de QuímicaUniversidade Estadual de Londrina (UEL)LondrinaBrazil
  4. 4.Instituto de QuímicaUniversidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
  5. 5.Universidade Estadual do Sudoeste da Bahia (UESB)JequiéBrazil

Personalised recommendations