Microchimica Acta

, Volume 177, Issue 1–2, pp 129–135 | Cite as

Protein-mediated synthesis of antibacterial silver nanoparticles deposited on titanium dioxide nanotube arrays

Original Paper

Abstract

We report on an effective route to decorate titanium nanotube arrays (TiNT) with silver nanoparticles (AgNPs). In this method, surface-adsorbed antibody molecules serve as templates to bind silver ions by electrostatic interaction. The photocatalytic activity of the TiNT under UV irradiation causes the photoreduction of AgNPs to occur, and the biological template is decomposed simultaneously. This route also was successfuly applied to gold nanoparticles (starting from negatively charged metallic precursor ions). Compared to undecorated samples, the AgNPs/TiNT samples under visible light display a much higher antibacterial activity against Escherichia coli.

Figure

An effective protein-mediated route to decorate Ag nanoparticles (AgNPs) in TiO2 nanotube arrays (TiNT) is reported. The photocatalytic activity of the TiNT under UV irradiation causes the photoreduction of AgNPs to occur, and the biological template is decomposed simultaneously. Compared to undecorated samples, the AgNPs/TiNT samples under visible light display a much higher antibacterial activity against Escherichia coli.

Keywords

Protein-mediated synthesis TiO2 nanutube Ag nanoparticles Photocatalysis Biological template Antibacterial 

Supplementary material

604_2012_769_MOESM1_ESM.doc (2.6 mb)
ESM 1(DOC 2647 kb)

References

  1. 1.
    Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRefGoogle Scholar
  2. 2.
    Matsunaga T, Tomoda R, Nakajima T, Wake H (1985) Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiol Lett 29:211–214CrossRefGoogle Scholar
  3. 3.
    Hoffmann MS, Martin T, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96CrossRefGoogle Scholar
  4. 4.
    Gerischer H, Heller A (1991) The role of oxygen in photooxidation of organic molecules on semiconductor particles. J Phys Chem 95:5261–5267CrossRefGoogle Scholar
  5. 5.
    Shkrob IA, SauerJr MC (2004) Hole scavenging and photo-stimulated recombination of electron—hole pairs in aqueous TiO2 nanoparticles. J Phys Chem B 108:12497–12511CrossRefGoogle Scholar
  6. 6.
    Haick H, Paz Y (2003) Long –Range Effects of noble metals on the photocatalytic properties of titanium dioxide. J Phys Chem B 107:2319–2326CrossRefGoogle Scholar
  7. 7.
    Liu Y, Wang X, Yang F, Yang X (2008) Excellent antimicrobial properties of mesoporous anatase TiO2 and Ag/TiO2 composite films. Micropor Mesopor Mater 114:431–439CrossRefGoogle Scholar
  8. 8.
    Cheng Q, Li C, Pavlinek V, Saha P, Wang H (2006) Surface-modified antibacterial TiO2/Ag+ nanoparticles: Preparation and properties. Appl Surf Sci 252:4154–4160CrossRefGoogle Scholar
  9. 9.
    Baysal A, Saatci AD, Kahraman M, Akman S (2011) FAAS slurry analysis of lead and copper ions preconcentrated on titanium dioxide nanoparticles coated with a silver shell and modified with cysteamine. Microchim Acta 173:495–502CrossRefGoogle Scholar
  10. 10.
    Pang M, Hu J, Zeng HC (2010) Synthesis, morphological control, and antibacterial properties of hollow/solid Ag2S/Ag heterodimers. J Am Chem Soc 132:10771–10785CrossRefGoogle Scholar
  11. 11.
    Lin WC, Chen CN, Tseng TT, Wei MH (2010) Micellar layer-by-layer synthesis of TiO2/Ag hybrid particles for bactericidal and photocatalytic activities. J Euro Cer Soc 30:2849–2857CrossRefGoogle Scholar
  12. 12.
    Gunawan C, Teoh WY, Marquis CP, Lifia J, Amal R (2009) Reversible antimicrobial photoswitching in nanosilver. Small 5:341–344CrossRefGoogle Scholar
  13. 13.
    Akhavan O, Ghaderi E (2010) Ag nanoparticles on mesoporous TiO2 thin film with high bactericidal activities. Surf Coat Tech 204:3676–3683CrossRefGoogle Scholar
  14. 14.
    Lorenz K, Bauer S, Gutbrod K, Guggenbichler JP, Schmuki P, Zollfrank C (2011) Anodic TiO2 nanotube layers electrochemically filled with MoO3 and their antimicrobial properties. Biointerphases 6:16–21CrossRefGoogle Scholar
  15. 15.
    Gong D, Grimes CA, Varghese OK, Hu WC, Singh RS, Chen Z, Dickey EC (2001) Titanium oxide nanotube arrays prepared by anodic oxidation. J Mater Res 16:3331–3334CrossRefGoogle Scholar
  16. 16.
    Wang J, Lin ZQ (2008) Freestanding TiO2 nanotube arrays with ultrahigh aspect ratio via electrochemical anodization. Chem Mater 20:1257–1261CrossRefGoogle Scholar
  17. 17.
    Macak JM, Tsuchiya H, Schmuki P (2005) High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angew Chem Int Ed 44:2100–2102CrossRefGoogle Scholar
  18. 18.
    Hosseini MG, Faraji M, Momeni MM, Ershad S (2011) An innovative electrochemical approach for voltammetric determination of levodopa using gold nanoparticles doped on titanium dioxide nanotubes. Microchim Acta 172:103–108CrossRefGoogle Scholar
  19. 19.
    Park J, Bauer S, von der Mark K, Schmuki P (2007) Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Lett 7:1686–1691CrossRefGoogle Scholar
  20. 20.
    Roy SC, Paulose M, Grimes CA (2007) The effect of TiO2 nanotubes in the enhancement of blood clotting for the control of hemorrhage. Biomaterials 28:4667–4672CrossRefGoogle Scholar
  21. 21.
    Song YY, Schmidt-Stein F, Bauer S, Schmuki P (2009) Amphiphilic TiO2 nanotube arrays: an actively controllable drug delivery system. J Am Chem Soc 131:4230–4232CrossRefGoogle Scholar
  22. 22.
    Macak JM, Barcauk PJ, Tsuchiya H, Nowakowska MZ, Ghicov A, Chojak M, Bauer S, Virtanen S, Kulesza PJ, Schmuki P (2005) Self-organized nanotubular TiO2 matrix as support for dispersed Pt/Ru nanoparticles: Enhancement of the electrocatalytic oxidation of methanol. Electrochem Commun 7:1417–1422CrossRefGoogle Scholar
  23. 23.
    Paramasivam I, Macak JM, Schmuki P (2008) Photocatalytic activity of TiO2 nanotube layers loaded with Ag and Au nanoparticles. Electrochem Commun 10:71–75CrossRefGoogle Scholar
  24. 24.
    Flynn CE, Lee SW, Peelle BR, Belcher AM (2003) Viruses as vehicles for growth, organization and assembly of materials. Acta Mater 51:5867–5880CrossRefGoogle Scholar
  25. 25.
    Poulsen N, Sumper M, Kroger N (2003) Biosilica formation in diatoms: characterization of native silaffin-2 and its role in silica morphogenesis. Proc Natl Acad Sci 100:12075–12080CrossRefGoogle Scholar
  26. 26.
    Flynn CE, Mao CB, Hayhurst A, Williams JL, Georgiou G, Iverson B, Belcher AM (2003) Synthesis and organization of nanoscale II–VI semiconductor materials using evolved peptide specificity and viral capsid assembly. J Mater Chem 13:2414–2421CrossRefGoogle Scholar
  27. 27.
    Bale SS, Asuri P, Karajanagi SS, Dordick JS, Kane RS (2007) Protein–directed formation of silver nanoparticles on carbon nanotubes. Adv Mater 19:3167–3170CrossRefGoogle Scholar
  28. 28.
    Wei G, Xu F, Li Z, Jandt KD (2011) Protein-promoted synthesis of Pt nanoparticles on carbon nanotubes for electrocatalytic nanohybrids with enhanced glucose sensing. Phys Chem C 115:11453–11460Google Scholar
  29. 29.
    Macak JM, Zlamal M, Krysa J, Schmuki P (2007) Self-organized TiO2 nanotube layers as highly efficient photocatalysts. Small 3:300–304CrossRefGoogle Scholar
  30. 30.
    Zhang L, Liu Y, Chen C (2009) Label-free amperometric immunosensor based on antibody immobilized on a positively charged gold nanoparticle/l-cysteine-modified gold electrode. Microchim Acta 164:161–166CrossRefGoogle Scholar
  31. 31.
    Song YY, Schmidt-Stein F, Berger S, Schmuki P (2010) TiO2 Nano test tubes as a self-cleaning platform for high-sensitivity immunoassays. Small 6:1180–1184CrossRefGoogle Scholar
  32. 32.
    Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Hand book of X-ray photoelectron spectroscopy, Perkin–Elmer Corporation publishing, Eden PrairieGoogle Scholar
  33. 33.
    Kunin CM (1987) Detection, prevention and management of urinary tract Infections. Lea & Febiger Publishing, Philadelphia, pp 245–247Google Scholar
  34. 34.
    Stathatos E, Lianos P (2000) Photocatalytically deposited silver nanoparticles on mesoporous TiO2 films. Langmuir 16:2398–2400CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.College of SciencesNortheastern UniversityShenyangChina
  2. 2.Department of Physics and EnergyUniversity of LimerickLimerickIreland
  3. 3.Institute of Physical ChemistryPolish Academy of SciencesWarsawPoland

Personalised recommendations