Advertisement

Microchimica Acta

, Volume 176, Issue 3–4, pp 485–491 | Cite as

Cataluminescence sensor for gaseous acetic acid using a thin film of In2O3

  • Ying Tao
  • Xiaoan Cao
  • Yan Peng
  • Yonghui Liu
  • Runkun Zhang
Original Paper

Abstract

We report on a cataluminescence sensor for the determination of gaseous acetic acid. It is based on a 60-nm thick sol–gel film of In2O3 on a ceramic support. SEM, XPS and surface profiling were applied for its characterization. It is found that aluminum ions of the ceramic substrate penetrate into the film and produce a synergetic catalytic effect. The sensor displays high sensitivity and specificity for acetic acid, a low detection limit, a wide linear range and a fast response. No (or only very low) interference was observed by formic acid, ammonia, acrolein, benzene, formaldehyde, ethanol, and acetaldehyde. The sensor was successfully applied to the determination of acetic acid in spiked air samples. We also discuss a conceivable mechanism (based on the reaction products) for the cataluminescence resulting from the oxidation reaction on the surface of the sensor film.

Figure

We report a cataluminescent sensor based on In2O3 thin film for determination of gaseous acetic acid. The catalyst was stable and won’t come off the substrate. Interaction between thin film and substrate increased cataluminescence property. The sensor possessed rapid response and presents the prospect for real-world use.

Keywords

Acetic acid In2O3 film Chemiluminescence Gas sensor 

Notes

Acknowledgements

The authors gratefully thank for the financial support by the National Natural Science Foundation of China (No. 21075024) and Technology Project Foundation of Guangzhou City (No. 2010Y1-C021).

Supplementary material

604_2011_745_MOESM1_ESM.doc (2.3 mb)
ESM 1 (DOC 2386 kb)

References

  1. 1.
    Johansson AK, Johansson A, Stan V, Ohlson CG (2005) Silicone sealers, acetic acid vapours and dental erosion: a work-related risk. Swed Dent J 29:61–69Google Scholar
  2. 2.
    Parmeggiani L, Sassi C (1954) Injuries to health caused by acetic acid in production of cellulose acetates. Med Lav 45:319–323Google Scholar
  3. 3.
    Ernstgard L, Iregren A, Sjogren B, Johanson G (2006) Acute effects of exposure to vapours of acetic acid in humans. Toxicol Lett 165:22–30CrossRefGoogle Scholar
  4. 4.
    Mizutani F, Hirata Y, Yabuki S, Iijima S (2003) Flow injection analysis of acetic acid in food samples by using trienzyme/poly(dimethylsiloxane)-bilayer membrane-based electrode as the detector. Sens Actuators B 91:195–198CrossRefGoogle Scholar
  5. 5.
    Mizutani F, Sawaguchi T, Iijima S (2001) An interference-free, amperometric biosensor for acetic acid based on a trienzyme/polydimethylsiloxane-bilayer membrane. Chem Lett 556Google Scholar
  6. 6.
    Mizutani F, Sawaguchi T, Sato Y, Yabuki S, Iijima S (2001) Amperometric determination of acetic acid with a trienzyme/poly(dimethylsiloxane)-bilayer-based sensor. Anal Chem 73:5738CrossRefGoogle Scholar
  7. 7.
    Pauls RE, Weight GJ (1983) Liquid chromatographic determination of acetic acid trapped in charcoal tubes. J Chromatogr A 254:171–177CrossRefGoogle Scholar
  8. 8.
    Tavares Araújo CS, Lira de Carvalho J, Ribeiro Mota D, de Araújo CL, Coelho NMM (2005) Determination of sulphite and acetic acid in foods by gas permeation flow injection analysis. Food Chem 92:765–770CrossRefGoogle Scholar
  9. 9.
    Munoz Leyva JA, Hidalgo Hidalgo de Cisneros JL, Garcia Gomez de Barreda D (1993) A coated piezoelectric crystal sensor for acetic acid vapour determination. Talanta 40:1725–1729CrossRefGoogle Scholar
  10. 10.
    Bariáin C, Matías IR, Fernández-Valdivielso C, Arregui FJ, Rodríguez-Méndez ML, de Saja JA (2003) Optical fiber sensor based on lutetium bisphthalocyanine for the detection of gases using standard telecommunication wavelengths. Sens Actuators B 93:153–158CrossRefGoogle Scholar
  11. 11.
    Gong H, Wang YJ, Teo SC, Huang L (1999) Interaction between thin-film tin oxide gas sensor and five organic vapors. Sens Actuators B 54:232–235CrossRefGoogle Scholar
  12. 12.
    Breysse M, Claudel B, Faure L, Guenin M, Williams RJ (1976) Chemiluminescence during the catalysis of carbon monoxide oxidation on a thoria surface. J Catal 45:137–144CrossRefGoogle Scholar
  13. 13.
    Nakagawa M (1995) A new chemiluminescence-based sensor for discriminating and determining constituents in mixed gases. Sens Actuators B 29:94–100CrossRefGoogle Scholar
  14. 14.
    Utsunomiya K, Nakagawa M, Tomiyama T, Yamamoto I, Matsuura Y, Chikamori S, Wada T, Yamashita N, Yamashita Y (1993) An adsorption-luminescent Al2O3 sheet for determining vapor of odor substances in air. Sens Actuators B 13–14:627–628CrossRefGoogle Scholar
  15. 15.
    Nakagawa M, Kawabata S, Nishiyama K, Utsunomiya K, Yamamoto I, Wada T, Yamashita Y, Yamashita N (1996) Analytical detection system of mixed odor vapors using chemiluminescence-based gas sensor. Sens Actuators B 34:334–338CrossRefGoogle Scholar
  16. 16.
    Okabayashi T, Matsuo N, Yamamoto I, Utsunomiya K, Yamashita N, Nakagawa M (2005) Temperature-programmed sensing for gas identification using the cataluminescence-based sensors. Sens Actuator B 108:515–520CrossRefGoogle Scholar
  17. 17.
    Okabayashi T, Fujimito T, Yamamoto I, Utsunomiya K, Wada T, Yamashita Y, Nakagawa M (2000) High sensitive hydrocarbon gas sensor utilizing cataluminescence of γ-Al2O3 activated with Dy3+. Sens Actuators B 64:54–58CrossRefGoogle Scholar
  18. 18.
    Zhu YF, Shi JJ, Zhang ZY, Zhang C, Zhang XR (2002) Development of a gas sensor utilizing chemiluminescence on nanosized titanium dioxide. Anal Chem 74:120–124CrossRefGoogle Scholar
  19. 19.
    Zhang ZY, Zhang C, Zhang XR (2002) Development of a chemiluminescence ethanol sensor based on nanosized ZrO2. Analyst 127:792–796CrossRefGoogle Scholar
  20. 20.
    Cao XA, Zhang ZY, Zhang XR (2004) A novel gaseous acetaldehyde sensor utilizing cataluminescence on nanosized-BaCO3. Sens Actuators B 99:30–35CrossRefGoogle Scholar
  21. 21.
    Huang GM, Lv Y, Zhang SC, Yang CD, Zhang XR (2005) Development of an aerosol chemiluminescent detector coupled to capillary electrophoresis for saccharide analysis. Anal Chem 77:7356–7365CrossRefGoogle Scholar
  22. 22.
    Zhang ZY, Xu K, Baeyens WRG, Zhang XR (2005) An energy-transfer cataluminescence reaction on nanosized catalysts and its application to chemical sensors. Anal Chim Acta 535:145–152CrossRefGoogle Scholar
  23. 23.
    Rao ZM, Shi JJ, Zhang XR (2002) Study of cataluminescence characteristics of NH3 on the surface of nanosized materials. Acta Chim Sinica 60:1668–1671Google Scholar
  24. 24.
    Cao XA, Feng GM, Gao HH, Luo XQ, Lu HL (2005) Nanosized γ-Al2O3 + Nd2O3-based cataluminescence sensor for ethylene dichloride. Luminescence 20:104–108CrossRefGoogle Scholar
  25. 25.
    Wen F, Zhang SC, Na N, Wu YY, Zhang XR (2009) Development of a sensitive gas sensor by trapping the analytes on nanomaterials and in situ cataluminescence detection. Sens Actuators B 141:168–173CrossRefGoogle Scholar
  26. 26.
    Tang HR, Li YM, Zheng CB, Ye J, Hou XD, Lv Y (2007) An ethanol sensor based on cataluminescence on ZnO nanoparticles. Talanta 72:1593–1597CrossRefGoogle Scholar
  27. 27.
    Yu C, Liu GH, Zuo BL, Tang YJ, Zhang T (2008) A novel gaseous pinacolyl alcohol sensor utilizing cataluminescence on alumina nanowires prepared by supercritical fluid drying. Anal Chim Acta 618:204–209CrossRefGoogle Scholar
  28. 28.
    Tang L, Li YM, Xu KL, Hou XD, Lv Y (2008) Sensitive and selective acetone sensor based on its cataluminescence from nano-La2O3 surface. Sens Actuators B 132:243–249CrossRefGoogle Scholar
  29. 29.
    Zhou KW, Ji XJ, Zhang N, Zhang XR (2006) On-line monitoring of formaldehyde in air by cataluminescence-based gas sensor. Sens Actuators B 119:392–397CrossRefGoogle Scholar
  30. 30.
    Wu YY, Zhang SC, Wang X, Na N, Zhang ZX (2008) Development of a benzaldehyde sensor utilizing chemiluminescence on nanosized Y2O3. Luminescence 23:376–380CrossRefGoogle Scholar
  31. 31.
    Rao ZM, Liu LJ, Xie JY, Zeng YY (2008) Development of a benzene vapour sensor utilizing chemiluminescence on Y2O3. Luminescence 23:163–168CrossRefGoogle Scholar
  32. 32.
    Cao XA, Wu WF, Chen N, Peng Y, Liu YH (2009) An ether sensor utilizing cataluminescence on nanosized ZnWO4. Sens Actuators B 137:83–87CrossRefGoogle Scholar
  33. 33.
    Cao XA, Tao Y, Li LL, Liu YH, Peng Y, Li JW (2009) An ethyl acetate sensor utilizing cataluminescence on Y2O3 nanoparticles. Luminescence. doi: 10.1002/bio.1174
  34. 34.
    Wu CC, Cao XA, Wen Q, Wang ZH, Gao QQ, Zhu HC (2009) A vinyl acetate sensor based on cataluminescence on MgO nanoparticles. Talanta 79:1223–1227CrossRefGoogle Scholar
  35. 35.
    Cao XA, Hu YQ, Tao Y (2008) Nanoporous In2O3-based cataluminescence sensor for acetic acid vapor. Sens Appl Symp 199–203Google Scholar
  36. 36.
    Cao XA, Zhang XR (2005) A research on determination of explosive gases utilizing cataluminescence sensor array. Luminescence 20:243–250CrossRefGoogle Scholar
  37. 37.
    Na N, Zhang SC, Wang S, Zhang XR (2006) A catalytic nanomaterial-based optical chemo-sensor array. J Am Chem Soc 128:14420–14421CrossRefGoogle Scholar
  38. 38.
    Steffes H, Imawan C, Solzbacher F, Obermeier E (2001) Enhancement of NO2 sensing properties of In2O3-based thin films using an Au or Ti surface modification. Sens Actuators B 78:106–112CrossRefGoogle Scholar
  39. 39.
    Cantalini C, Wlodarski W, Sun HT, Atashbar MZ, Passacantando M, Phani AR, Santucci S (1999) Investigation on the cross sensitivity of NO2 sensors based on In2O3 thin films prepared by sol-gel and vacuum thermal evaporation. Thin Solid Films 350:276–282CrossRefGoogle Scholar
  40. 40.
    Yamaura H, Tamaki J, Moriya K, Miura N, Yamazoe N (1997) Highly selective CO sensor using indium oxide doubly promoted by cobalt oxide and gold. J Electrochem Soc 144:158–160CrossRefGoogle Scholar
  41. 41.
    Ivanovskaya M, Gurlo A, Bogdanov P (2001) Mechamism of O3 and NO2 detection and selectivity of In2O3 sensors. Sens Actuators B 77:264–267CrossRefGoogle Scholar
  42. 42.
    Tao Y, Cao XA, Liu YH, Peng Y (2010) A novel cataluminescence gas sensor based on MgO thin film. Sens Actuators B 148:292–297CrossRefGoogle Scholar
  43. 43.
    Zhang RK, Cao XA, Liu YH, Peng Y (2010) A highly sensitive and selective dimethyl ether sensor based on cataluminescence. Talanta 82:728–732CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Ying Tao
    • 1
  • Xiaoan Cao
    • 1
  • Yan Peng
    • 1
  • Yonghui Liu
    • 1
  • Runkun Zhang
    • 1
  1. 1.Environmental Science and Engineering InstituteGuangzhou UniversityGuangzhouPeople’s Republic of China

Personalised recommendations