Microchimica Acta

, Volume 176, Issue 1–2, pp 73–80 | Cite as

Glucose biosensor based on glucose oxidase immobilized on a nanofilm composed of mesoporous hydroxyapatite, titanium dioxide, and modified with multi-walled carbon nanotubes

  • Junhua LiEmail author
  • Daizhi Kuang
  • Yonglan Feng
  • Fuxing Zhang
  • Mengqin Liu
Original Paper


We report on a highly sensitive glucose biosensor that was fabricated from a composite made from mesoporous hydroxyapatite and mesoporous titanium dioxide which then were ultrasonically mixed with multi-walled carbon nanotubes to form a rough nanocomposite film. This film served as a platform to immobilize glucose oxidase onto a glassy carbon electrode. The morphological and electrochemical properties of the film were examined by scanning electron microscopy and electrochemical impedance spectroscopy. Cyclic voltammetry and chronoamperometry were used to characterize the electrochemical performances of the biosensor which exhibited excellent electrocatalytic activity to the oxidation of glucose. At an operating potential of 0.3 V and pH 6.8, the sensor displays a sensitivity of 57.0 μA mM−1 cm−2, a response time of <5 s, a linear dynamic range from 0.01 to 15.2 mM, a correlation coefficient of 0.9985, and a detection limit of 2 μM at an SNR of 3. No interferences are found for uric acid, ascorbic acid, dopamine and most carbohydrates. The sensor is stable and was successfully applied to the determination of glucose in real samples.


Mesoporous hydroxyapatite, titanium dioxide and multi-walled carbon nanotubes were ultrasonically mixed to form a rough nanofilm, and a new glucose biosensor was fabricated based on this nanofilm. The biosensor had great bioelectrocatalytic activity to glucose oxidation, and it exhibited a high sensitivity, wide linear dynamic range and high selectivity for glucose determination.


Glucose biosensor Glucose oxidase Nanocomposite Electrochemical determination 



This work is kindly supported by the supports of the Open Fund Project of Key Laboratory in Hunan Universities (No. 09K099, No. 10K010) and the Department of Science and Technology of Hengyang City (No. 2009KG23, No. 2009KG50).


  1. 1.
    Liu X, Shi L, Niu W, Li H, Xu G (2008) Amperometric glucose biosensor based on single-walled carbon nanohorns. Biosens Bioelectron 23:1887–1890CrossRefGoogle Scholar
  2. 2.
    Manso J, Mena ML, Yáñez-Sedeño P, Pingarrόn J (2007) Electrochemical biosensors based on colloidal gold–carbon nanotubes composite electrodes. J Electroanal Chem 603:1–7CrossRefGoogle Scholar
  3. 3.
    McMahon CP, Killoran SJ, O’Neill RD (2005) Design variations of a polymer–enzyme composite biosensor for glucose: Enhanced analyte sensitivity without increased oxygen dependence. J Electroanal Chem 580:193–202CrossRefGoogle Scholar
  4. 4.
    Liu X, Zeng X, Mai N, Liu Y, Kong B, Li Y, Wei W, Luo S (2010) Amperometric glucose biosensor with remarkable acid stability based on glucose oxidase entrapped in colloidal gold-modified carbon ionic liquid electrode. Biosens Bioelectron 25:2675–2679CrossRefGoogle Scholar
  5. 5.
    German N, Ramanaviciene A, Voronovic J, Ramanavicius A (2010) A glucose biosensor based on graphite electrodes modified with glucose oxidase and colloidal gold nanoparticles. Microchim Acta 168:221–229CrossRefGoogle Scholar
  6. 6.
    Umar A, Rahman MM, Al-Hajry A, Hahn YB (2009) Enzymatic glucose biosensor based on flower-shaped copper oxide nanostructures composed of thin nanosheets. Electrochem Commun 11:278–281CrossRefGoogle Scholar
  7. 7.
    Zhang WD, Chen J, Jiang LC, Yu YX, Zhang JQ (2010) A highly sensitive nonenzymatic glucose sensor based on NiO-modified multi-walled carbon nanotubes. Microchim Acta 168:259–265CrossRefGoogle Scholar
  8. 8.
    Zeng J, Wei W, Liu X, Wang Y, Luo G (2008) A simple method to fabricate a Prussian Blue nanoparticles/carbon nanotubes/poly(1,2-diaminobenzene) based glucose biosensor. Microchim Acta 160:261–267CrossRefGoogle Scholar
  9. 9.
    Wang Y, Wei W, Zeng J, Liu X, Zeng X (2008) Fabrication of a copper nanoparticle/chitosan/carbon nanotube-modified glassy carbon electrode for electrochemical sensing of hydrogen peroxide and glucose. Microchim Acta 160:253–260CrossRefGoogle Scholar
  10. 10.
    Kang X, Mai Z, Zou X, Cai P, Mo J (2008) Glucose biosensors based on platinum nanoparticles-deposited carbon nanotubes in sol–gel chitosan/silica hybrid. Talanta 74:879–886CrossRefGoogle Scholar
  11. 11.
    Li J, Kuang D, Feng Y, Zhang F, Liu M (2011) Voltammetric determination of bisphenol A in food package by a glassy carbon electrode modified with carboxylated multi-walled carbon nanotubes. Microchim Acta 172:379–386CrossRefGoogle Scholar
  12. 12.
    Li J, Zhang F, Wang J, Xu Z, Zeng R (2009) Voltammetric determination of In3+ based on the bifunctionality of a multi-walled carbon nanotubes-nafion modified electrode. Anal Sci 25:653–657CrossRefGoogle Scholar
  13. 13.
    Britto PJ, Santhanam KSV, Ajayan PM (1996) Carbon nanotube electrode for oxidation of dopamine. Biosens Bioelectron 41:121–125Google Scholar
  14. 14.
    Shen Y, Xu Q, Gao H, Zhu N (2009) Dendrimer-encapsulated Pd nanoparticles anchored on carbon nanotubes for electro-catalytic hydrazine oxidation. Electrochem Commun 11:1329–1332CrossRefGoogle Scholar
  15. 15.
    Jo WK, Kim JT (2009) Application of visible-light photocatalysis with nitrogen-doped or unmodified titanium dioxide for control of indoor-level volatile organic compounds. J Hazard Mater 164:360–366CrossRefGoogle Scholar
  16. 16.
    Espinoza LAT, Rembor M, Matesanz CA, Heidt A, Frimmel FH (2009) Formation of bromoform in irradiated titanium dioxide suspensions with varying photocatalyst, dissolved organic carbon and bromide concentrations. Water Res 43:4143–4148CrossRefGoogle Scholar
  17. 17.
    Chang SM, Doong RA (2006) Characterization of Zr-doped TiO2 nanocrystals prepared by a nonhydrolytic sol–gel method at high temperatures. J Phys Chem B 110:20808–20814CrossRefGoogle Scholar
  18. 18.
    Doong R, Shih H (2010) Array-based titanium dioxide biosensors for ratiometric determination of glucose, glutamate and urea. Biosens Bioelectron 25:1439–1446CrossRefGoogle Scholar
  19. 19.
    Viticoli M, Curulli A, Cusma A, Kaciulis S, Nunziante S, Pandolfi L, Valentini F, Padeletti G (2006) Third-generation biosensors based on TiO2 nanostructured fims. Mater Sci Eng C 26:947–951CrossRefGoogle Scholar
  20. 20.
    Bajpai AK, Bundela H (2009) Development of poly(acrylamide)-hydroxyapatite composites as bone substitutes: Study of mechanical and blood compatible behavior. Polym Compos 30:1532–1543CrossRefGoogle Scholar
  21. 21.
    Tang Y, Du Y, Li Y, Wang X, Hu X (2009) A thermosensitive chitosan/poly(vinyl alcohol) hydrogel containing hydroxyapatite for protein delivery. J Biomed Mater Res Part A 91A:953–963CrossRefGoogle Scholar
  22. 22.
    Salman S, Soundararajan S, Safina G, Satoh I, Danielsson B (2008) Hydroxyapatite as a novel reversible in situ adsorption matrix for enzyme thermistor-based FIA. Talanta 77:490–493CrossRefGoogle Scholar
  23. 23.
    Wang B, Zhang JJ, Pan ZY, Tao XQ, Wang HS (2009) A novel hydrogen peroxide sensor based on the direct electron transfer of horseradish peroxidase immobilized on silica–hydroxyapatite hybrid film. Biosens Bioelectron 24:1141–1145CrossRefGoogle Scholar
  24. 24.
    Wang S, Lei Y, Zhang Y, Tang J, Shen G, Yu R (2010) Hydroxyapatite nanoarray-based cyanide biosensor. Anal Biochem 398:191–197CrossRefGoogle Scholar
  25. 25.
    Zhang Q, Chen C, Xie Q, Liu P (2009) Electrodeposition of a biocompatible hydroxyapatite matrixto immobilize glucose oxidase for sensitive glucose biosensing. Microchim Acta 165:223–229CrossRefGoogle Scholar
  26. 26.
    Wang Y, Jiang ZH (2006) Preparation and photocatalytic activity of mesoporous TiO2 derived from hydrolysis condensation with TX-100 as template. Mater Sci Eng B 128:229–233CrossRefGoogle Scholar
  27. 27.
    Wang H, Zhai L, Li Y, Shi T (2008) Preparation of irregular mesoporous hydroxyapatite. Mater Res Bull 43:1607–1614CrossRefGoogle Scholar
  28. 28.
    Bard AJ, Faulkner LR (2001) Electrochemical methods. Wiley, New York, pp 230–231Google Scholar
  29. 29.
    Pang X, He D, Luo S, Cai Q (2009) An amperometric glucose biosensor fabricated with Pt nanoparticle-decorated carbon nanotubes/TiO2 nanotube arrays composite. Sens Actuators B 137:134–138CrossRefGoogle Scholar
  30. 30.
    Bai Y, Yang H, Yang W, Li Y, Sun C (2007) Gold nanoparticles-mesoporous silica composite used as an enzyme immobilization matrix for amperometric glucose biosensor construction. Sens Actuators B 124:179–186CrossRefGoogle Scholar
  31. 31.
    Kamin RA, Wilson GS (1980) Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer. Anal Chem 52:1198–1205CrossRefGoogle Scholar
  32. 32.
    Manesha KM, Kim HT, Santhosh P, Gopalan AI, Lee KP (2008) A novel glucose biosensor based on immobilization of glucose oxidase into multiwall carbon nanotubes–polyelectrolyte-loaded electrospun nanofibrous membrane. Biosens Bioelectron 23:771–779CrossRefGoogle Scholar
  33. 33.
    Murthy ASN, Sharma J (1998) Glucose oxidase bound to selfassembled monolayers of bis(4-pyridyl) disulfide at a gold electrode; amperometric determination of glucose. Anal Chim Acta 363:215–220CrossRefGoogle Scholar
  34. 34.
    Nenkova R, Ivanova D, Vladimirova J, Godjevargova T (2010) New amperometric glucose biosensor based on cross-linking of glucose oxidase on silica gel/multiwalled carbon nanotubes/polyacrylonitrile nanocomposite film. Sens Actuators B 148:59–65CrossRefGoogle Scholar
  35. 35.
    Sousa CP, Polo AS, Torresi RM, Córdoba de Torres SI, Alves WA (2010) Chemical modification of a nanocrystalline TiO2 film for efficient electric connection of glucose oxidase. J Colloid Interface Sci 346:442–447CrossRefGoogle Scholar
  36. 36.
    Benvenuto P, Kafi AKM, Chen A (2009) High performance glucose biosensor based on the immobilization of glucose oxidase onto modified titania nanotube arrays. J Electroanal Chem 627:76–81CrossRefGoogle Scholar
  37. 37.
    Qiu JD, Xie HY, Liang RP (2008) Preparation of porous chitosan/carbon nanotubes film modified electrode for biosensor application. Microchim Acta 162:57–64CrossRefGoogle Scholar
  38. 38.
    Wang L, Bai J, Bo X, Zhang X, Guo L (2011) A novel glucose sensor based on ordered mesoporous carbon–Au nanoparticles nanocomposites. Talanta 83:1386–1391CrossRefGoogle Scholar
  39. 39.
    Periasamy AP, Chang YJ, Chen SM (2011) Amperometric glucose sensor based on glucose oxidase immobilized on gelatin-multiwalled carbon nanotube modified glassy carbon electrode. Bioelectrochemistry 80:114–120CrossRefGoogle Scholar
  40. 40.
    Zhang Y, Sun X, Zhu L, Shen H, Jia N (2011) Electrochemical sensing based on graphene oxide/Prussian blue hybrid film modified electrode. Electrochim Acta 56:1239–1245CrossRefGoogle Scholar
  41. 41.
    Wang K, Liu Q, Guan QM, Wu J, Li HN, Yan JJ (2011) Enhanced direct electrochemistry of glucose oxidase and biosensing for glucose via synergy effect of graphene and CdS nanocrystals. Biosens Bioelectron 26:2252–2257CrossRefGoogle Scholar
  42. 42.
    Li H, He J, Zhao Y, Wu D, Cai Y, Wei Q, Yang M (2011) Immobilization of glucose oxidase and platinum on mesoporous silica nanoparticles for the fabrication of glucose biosensor. Electrochim Acta 56:2960–2965CrossRefGoogle Scholar
  43. 43.
    Zhong H, Yuan R, Chai Y, Li W, Zhong X, Zhang Y (2011) In situ chemo-synthesized multi-wall carbon nanotube-conductive polyaniline nanocomposites: characterization and application for a glucose amperometric biosensor. Talanta 85:104–111CrossRefGoogle Scholar
  44. 44.
    Xu Y, Liu X, Ding Y, Luo L, Wang Y, Zhang Y, Xu Y (2011) Preparation and electrochemical investigation of a nano-structured material Ni2+/MgFe layered double hydroxide as a glucose biosensor. Appl Clay Sci 52:322–327CrossRefGoogle Scholar
  45. 45.
    Li W, Yuan R, Chai Y, Zhong H, Wang Y (2011) Study of the biosensor based on platinum nanoparticles supported on carbon nanotubes and sugar–lectin biospecific interactions for the determination of glucose. Electrochim Acta 56:4203–4208CrossRefGoogle Scholar
  46. 46.
    Bergmeyer HU, Bernt E (1974) Methods of enzymatic analysis, 2nd edn. Academic, New York, pp 1205–1212Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Junhua Li
    • 1
    Email author
  • Daizhi Kuang
    • 1
  • Yonglan Feng
    • 1
  • Fuxing Zhang
    • 1
  • Mengqin Liu
    • 1
  1. 1.Key Laboratory of Functional Organometallic Materials of Hunan Province College, Department of Chemistry and Material ScienceHengyang Normal UniversityHengyangPeople’s Republic of China

Personalised recommendations