Microchimica Acta

, Volume 175, Issue 3–4, pp 241–250 | Cite as

Overcoming the adverse effects of crosslinking in biosensors via addition of PEG: Improved sensing of hydrogen peroxide using immobilized peroxidase

  • Mohammed ElKaoutit
  • Ignacio Naranjo-Rodriguez
  • Manuel Dominguez
  • Jose Luis Hidalgo-Hidalgo de Cisneros
Original Paper

Abstract

Glutaraldehyde (GA) is widely used as a crosslinker to immobilize enzymes, for examples in biosensors, but often causes partial denaturation. We find that the proper use of poly(ethylene glycol) (PEG) during the crosslinking process can fully preserve the native state and activity of horseradish peroxidase (HRP). An amperometric biosensor was developed based on these findings for the direct determination of hydrogen peroxide. UV-Vis and FTIR spectroscopy reveal that the HRP entrapped in a polypyrrole matrix retains its native structure. The addition of PEG increases the sensitivity and stability of the biosensor and prevents many of effects caused by intra-crosslinking via GA. The biosensor was operated at a potential of −350 mV (vs Ag/AgCl) without any mediator and gave a linear response to H2O2 in the 5 to 190 μM concentration range. The apparent Michaelis-Menten constant is 3.37 mM, and maximal current is as high as 3.43 μA. The surface of the biosensor was characterized by atomic force microscopy operated in the tapping mode.

Figure

Solid phase and AFM images of native and denaturized peroxidase

Keywords

Direct electrocatalysis Heme enzyme Polyethylene glycol Glutaraldehyde Intra-crosslinkage Conformational study 

Supplementary material

604_2011_686_MOESM1_ESM.doc (708 kb)
ESM 1(DOC 707 kb)

References

  1. 1.
    Kirchner JR, (1981) Hydrogen Peroxide. In: Grayson M (ed) Kirk-Othmer Encyclopedia of Chemical Technology, 3rd edn, vol. 13. John Wiley and Sons, New York, pp 12–38Google Scholar
  2. 2.
    De Mattos IL, Shiraishi KA, Braz AD, Fernández JR (2003) Hydrogen peroxide: importance and determination. Quim Nova 26:373–380CrossRefGoogle Scholar
  3. 3.
    Starodub NF (2007) Hydrogen peroxide: control of its content in water object. J Water Chem Technol 29:269–276CrossRefGoogle Scholar
  4. 4.
    Guwy AJ, Hawkes FR, Martin SR, Hawkes DL, Cunnah P (2000) A technique for monitoring hydrogen peroxide concentration off-line and on-line. Water Res 34:2191–2198CrossRefGoogle Scholar
  5. 5.
    Wagner M, Brumelis D, Gehr R (2002) Disinfection of wastewater by hydrogen peroxide or peracetic acid: Development of residual disinfectant and application to a physicochemically treated municipal effluent. Water Environ Res 74:33–50CrossRefGoogle Scholar
  6. 6.
    Singh S, Solanki PR, Pandey MK, Malhotra BD (2006) Cholesterol biosensor based on cholesterol esterase, cholesterol oxidase and peroxidase immobilized onto conducting polyaniline film. Sens Actuators B 115:534–541CrossRefGoogle Scholar
  7. 7.
    Regalado C, García-Almendárez BE, Duarte-Vázquez MA (2004) Biotechnological applications of peroxidases. Phytochem Rev 3:243–256CrossRefGoogle Scholar
  8. 8.
    Shi G, Yamamoto K, Zhou T, Xu F, Kato T, Ji-Ye J, Jin L (2003) On-line biosensors for simultaneous determination of glucose, choline, and glutamate integrated with a microseparation system. Electrophoresis 24:3266–3272CrossRefGoogle Scholar
  9. 9.
    Wollenberger U (2005) Third generation biosensors-integrating recognition and transduction in electrochemical sensors. In: Gorton L (ed) Comprehensive Analytical chemistry, Vol. XLIV: biosensors and modern biospecific analytical techniques, 1st edn. Wilson & Wilson’s, Amsterdam, pp 65–130Google Scholar
  10. 10.
    Schäferling M, Dominik BM, Grögel DBM, Schreml S (2011) Luminescent probes for detection and imaging of hydrogen peroxide. Microchimica Acta 174:1–18CrossRefGoogle Scholar
  11. 11.
    Ahuja T, Mir IA, Kumar D, Rajesh (2007) Biomolecular immobilization on conducting polymers for biosensors applications. Biomaterials 28:791–805CrossRefGoogle Scholar
  12. 12.
    Cosnier S (1999) Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. Biosens Bioelectron 14:443–456CrossRefGoogle Scholar
  13. 13.
    Gerard M, Chauby BD (2002) Application of conducting polymers to biosensors. Biosens Bioelectron 17:345–359CrossRefGoogle Scholar
  14. 14.
    Xu Y, Peng W, Liu X, Li G (2004) A new film for the fabrication of an unmediated H2O2 biosensor. Biosens Bioelectron 20:533–537CrossRefGoogle Scholar
  15. 15.
    Sharma S, Johnson RW, Desai TA (2004) XPS and AFM analysis of antifouling PEG interfaces for microfabricated silicon biosensors. Biosens Bioelectron 20:227–239CrossRefGoogle Scholar
  16. 16.
    Bélanger D, Nadreau J, Fortier G (1989) Electrochemistry of the polypyrrole glucose oxidase electrode. J Electroanal Chem 274:143–155CrossRefGoogle Scholar
  17. 17.
    El Kaoutit M, Naranjo-Rodriguez I, Temsamani KR, Hidalgo-Hidalgo de Cisneros JL (2007) The Sonogel–Carbon materials as basis for development of enzyme biosensors for phenols and polyphenols monitoring: a detailed comparative study of three immobilization matrixes. Biosen Bioelectron 22:2958–2966CrossRefGoogle Scholar
  18. 18.
    El Kaoutit M, Bouchta D, Zejli H, Izaoumen N, Temsamani KR (2004) A simple conducting polymer-based biosensor for the detection of atrazine. Anal Lett 37:1671–1681CrossRefGoogle Scholar
  19. 19.
    Izaoumen N, Bouchta D, Zejli H, El Kaoutit M, Stalcup AM, Temsamani KR (2005) Electrosynthesi and analytical performances of functionalized poly(pyrrole/β-cyclodextrin) films. Talanta 66:111–117CrossRefGoogle Scholar
  20. 20.
    Santucci R, Laurenti E, Sinibaldi F, Ferrari RP (2002) Effect of dimethyl sulfoxide on the structure and the functional properties of horseradish peroxidase as observed by spectroscopy and cyclic voltammetry. Biochim Biophys Acta 1596:225–233CrossRefGoogle Scholar
  21. 21.
    Chen C, Jiang Y, Kan J (2006) A noninterference polypyrrole glucose biosensor. Biosens Bioelectron 22:639–643CrossRefGoogle Scholar
  22. 22.
    Gade VK, Shirale DJ, Gaikwad PD, Savale PA, Kakde KP, Kharat HJ, Shirsat MD (2006) Immobilization of GOD on electrochemically synthesized PPy–PVS composite film by cross-linking via glutaraldehyde for determination of glucose. React Funct Polym 66:1420–1426CrossRefGoogle Scholar
  23. 23.
    Smulevich G, Paoli M, De Sanctis G, Mantini AR, Ascoli F, Coletta M (1997) Spectroscopic evidence for conformational transition in horseradish peroxidase at very low pH. Biochemistry 36:640–649CrossRefGoogle Scholar
  24. 24.
    Joo H, Yoo YJ, Ryu DDY (1996) A biosensor stabilized by polyethylene glycol for the monitoring of hydrogen peroxide in organic solvent media. Enzyme Microb Technol 19:52–56CrossRefGoogle Scholar
  25. 25.
    Veitch NC, Smith AT (2000) Horseradish peroxidase. Adv Inorg Chem 51:107–162CrossRefGoogle Scholar
  26. 26.
    Lindgren A, Tanaka M, Ruzgas T, Gorton L, Gazaryan I, Ishimori K, Morishima I (1999) Direct electron transfer catalysed by recombinant forms of horseradish peroxidase: insight into the mechanism. Electrochem Commun 1:171–175CrossRefGoogle Scholar
  27. 27.
    Harbury HA (1957) Oxidation-reduction potentials of horseradish peroxidase. J Biol Chem 255:1009–1024Google Scholar
  28. 28.
    Razola SS, Ruiz BL, Diez NM, Mark HB, Kauffman JM (2002) Hydrogen peroxide sensitive amperometric biosensor based on horseradish peroxidase entrapped in a polypyrrole electrode. Biosens Bioelectron 17:921–928CrossRefGoogle Scholar
  29. 29.
    Miller JC, Miller JN (1993) Estadistica para Quimica Analitica. Addison-Wesley Iberoamericana, WilmingtonGoogle Scholar
  30. 30.
    Xu Q, Mao C, Liu N-N, Zhu J-J, Sheng J (2006) Direct electrochemistry of horseradish peroxidase based on biocompatible carboxymethyl chitosan-gold nanoparticle nanocomposite. Biosens Bioelectron 22:768–773CrossRefGoogle Scholar
  31. 31.
    Hong J, Moosavi-Movahedi AA, Ghourchian H, Molaei A, Razaei-Zaechi S (2007) Direct electron transfer of horseradish peroxidase on Nafion-cysteine modified gold electrode. Electrochim Acta 52:6261–6267CrossRefGoogle Scholar
  32. 32.
    ElKaoutit M, Naranjo-Rodriguez I, Domínguez M, Hernández-Artiga MP, Bellido-Milla D, Hidalgo-Hidalgo de Cisneros JL (2008) A third-generation hydrogen peroxide biosensor based on Horseradish Peroxidase (HRP) enzyme immobilized in a Nafion–Sonogel–Carbon composite. Electrochim Acta 53:7131–7137CrossRefGoogle Scholar
  33. 33.
    Xu S, Zhang X, Wan T, Zhang C (2011) A third-generation hydrogen peroxide biosensor based on horseradish peroxidase cross-linked to multi-wall carbon nanotubes. Microchimica Acta 172:179–205Google Scholar
  34. 34.
    Wang J, Gu M, Di J, Gao Y, Wu Y, Tu Y (2007) A carbon nanotube/silica sol-gel architecture for immobilization of horseradish peroxidase for electrochemical biosensor. Bioprocess Biosyst Eng 30:289–296CrossRefGoogle Scholar
  35. 35.
    Liu SQ, Ju HX (2002) Renewable reagentless hydrogen peroxide sensor based on direct electron transfer of horseradish peroxidase immobilized on colloidal gold-modified electrode. Anal Biochem 307:110–116CrossRefGoogle Scholar
  36. 36.
    Ferri T, Poscia A, Santucci R (1998) Direct electrochemistry of membrane-entrapped horseradish peroxidase. Part II: amperometric detection of Hydrogen peroxide. Bioelectrochem Bioenerg 45:221–226CrossRefGoogle Scholar
  37. 37.
    Csoregi E, Gorton L, Marco-Varga G (1993) Carbon fibres as electrode materials for the construction of peroxidase-modified amperometric biosensors. Anal Chim Acta 273:59–70CrossRefGoogle Scholar
  38. 38.
    Chen H, Dong S (2007) Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in sol–gel-derived ceramic–carbon nanotube nanocomposite film. Biosens Bioelectron 22:1811–1815CrossRefGoogle Scholar
  39. 39.
    Zhao X, Mai Z, Kang X, Zou X (2008) Direct electrochemistry and electrocatalysis of horseradish peroxidase based on clay-chitosan-gold nanoparticule nanocomposite. Biosens Bioelectron 23:1032–1038CrossRefGoogle Scholar
  40. 40.
    Feng L, Wang L, Hu Z, Tian Y, Xian Y, Litong L (2009) Encapsulation of horseradish peroxidase into hydrogel, and its bioelectrochemistry. Microchimica Acta 169:49–54CrossRefGoogle Scholar
  41. 41.
    Dock E, Lindgren A, Ruzgas T, Gorton L (2001) Effect of interfering substances on current response of recombinant peroxidase and glucose oxidase-recombinant peroxidase modified graphite electrodes. Analyst 126:1929–1935CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Mohammed ElKaoutit
    • 1
  • Ignacio Naranjo-Rodriguez
    • 1
  • Manuel Dominguez
    • 2
  • Jose Luis Hidalgo-Hidalgo de Cisneros
    • 1
  1. 1.Departamento de Química Analítica, Facultad de CienciasUniversidad de CádizPuerto RealSpain
  2. 2.Departamento de la Física de la Materia Condensada, Facultad de CienciasUniversidad de CádizPuerto RealSpain

Personalised recommendations