Advertisement

Microchimica Acta

, 175:1 | Cite as

Electrochemical sensors based on graphene materials

  • Tian Gan
  • Shengshui Hu
Review Article

Abstract

Single–layered graphene, emerging as a true two–dimensional nanomaterial, has tremendous potential for electrochemical catalysis and biosensing as a novel electrode material. Considering the excellent properties of graphene, such as large surface–to–volume ratio, high conductivity and electron mobility at room temperature, low energy dynamics of electrons with atomic thickness, robust mechanical and flexibility, we give a general view of recent advances in electrochemical sensors based on graphene. We are highlighting here important applications of graphene and graphene nanocomposites, and the assay strategies in electrochemical sensors for DNA, proteins, neurotransmitters, phytohormones, pollutants, metal ions, gases, hydrogen peroxide, and in medical, enzymatic and immunosensors.

Graphical Abstract

Graphene, a recent star carbon nanomaterial with lots of excellent properties, has caused increasing interests on the development of new-types graphene-based electrochemical sensors including DNA and protein sensor, enzyme based sensor, immunosensor, neurotransmitter sensor, medicine sensor, phytohormone sensor, pollutants sensor, metals ion sensor, gas sensor, and H2O2 sensor

Keywords

Electrochemical sensors Graphene Graphene nanocomposites Modified electrode 

Notes

Acknowledgment

This research is supported by the National Nature Science Foundation of China (Nos. 90817103, 20805035 and 31070885).

References

  1. 1.
    Srinivasan C (2007) Graphene–mother of all graphitic materials. Curr Sci 92:1338–1339Google Scholar
  2. 2.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRefGoogle Scholar
  3. 3.
    Shioyama H, Akita T (2003) A new route to carbon nanotubes. Carbon 41:179–181CrossRefGoogle Scholar
  4. 4.
    Viculis LM, Mack JJ, Kaner RB (2003) A chemical route to carbon nanoscrolls. Science 299:1361–1361CrossRefGoogle Scholar
  5. 5.
    Chae HK, Siberio–Perez DY, Kim J, Go Y, Eddaoudi M, Matzger AJ, O’Keeffe M, Yaghi OM (2004) A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427:523–527CrossRefGoogle Scholar
  6. 6.
    Zhang YB, Tan YW, Stormer HL, Kim P (2005) Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438:201–204CrossRefGoogle Scholar
  7. 7.
    Drzal LT, Fukushima H (2006) High performance fillers, international conference on fillers for polymers, 2nd edn. Cologne, Germany, pp 1–8Google Scholar
  8. 8.
    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191CrossRefGoogle Scholar
  9. 9.
    Steurer P, Wissert R, Thomann R, Mülhaupt R (2009) Functionalized graphemes and thermoplastic nanocomposites based upon expanded graphite oxide. Macromol Rapid Commun 30:316–327CrossRefGoogle Scholar
  10. 10.
    Brodie BC (1860) Sur le poids atomique du graphite. Ann Chim Phys 59:466–472Google Scholar
  11. 11.
    Hummers WS, Offeman RE (1958) Preparation of graphite oxide. J Am Chem Soc 80:1339–1339CrossRefGoogle Scholar
  12. 12.
    Staudenmaier L (1898) Verfahren zur darstellung der graphitsäure. Ber Dt sch Chem Ges 31:1481–1487CrossRefGoogle Scholar
  13. 13.
    Guo CX, Yang HB, Sheng ZM, Lu ZS, Song QL, Li CM (2010) Layered graphene/quantum dots for photovoltaic devices. Angew Chem Int Ed 49:3014–3017CrossRefGoogle Scholar
  14. 14.
    Lu ZS, Guo CX, Yang HB, Qiao Y, Guo J, Li CM (2011) One–step auqeous synthesis of graphene–CdTe quantum dot–composed nanosheet and its enhanced photoresponses. J Colloid Interface Sci 353:588–592CrossRefGoogle Scholar
  15. 15.
    Guo CX, Zheng XT, Lu ZS, Lou XW, Li CM (2010) Biointerface by cell growth on layered graphene–artificial peroxidase–protein nanostructure for in situ quantitative molecular detection. Adv Mater 22:5164–5167CrossRefGoogle Scholar
  16. 16.
    Wang Y, Guo CX, Wang X, Guan C, Yang HB, Wang K, Li CM (2011) Hydrogen storage in a Ni–B nanoalloy–doped three–demensional graphene material. Energy Environ Sci 4:195–200CrossRefGoogle Scholar
  17. 17.
    Wang M, Li CM (2011) Negative differential resistance in oxidized zigzag graphene nanoribbons. Phys Chem Chem Phys 13:1413–1418CrossRefGoogle Scholar
  18. 18.
    Du M, Yang T, Jiao K (2010) Immobilization–free direct electrochemical detection for DNA specific sequences based on electrochemically converted gold nanoparticles/graphene composite film. J Mater Chem 20:9253–9260CrossRefGoogle Scholar
  19. 19.
    Xie X, Zhao KK, Xu XD, Zhao WB, Liu SJ, Zhu ZW, Li MX, Shi ZJ, Shao YH (2010) Study of heterogeneous electron transfer on the graphene/self–assembled monolayer modified gold electrode by electrochemical approaches. J Phys Chem C 114:14243–14250CrossRefGoogle Scholar
  20. 20.
    Zhou M, Zhai YM, Dong SJ (2009) Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal Chem 81:5603–5613CrossRefGoogle Scholar
  21. 21.
    Scott CL, Zhao GJ, Pumera M (2010) Stacked graphene nanofibers doped polypyrrole nanocomposites for electrochemical sensing. Electrochem Commun 12:1788–1791CrossRefGoogle Scholar
  22. 22.
    Muti M, Sharma S, Erdem A, Papakonstantinou P (2011) Electrochemical monitoring of nucleic acid hybridization by single–use graphene oxide–based sensor. Electroanalysis 23:272–279CrossRefGoogle Scholar
  23. 23.
    Huang KJ, Niu DJ, Sun JY, Han CH, Wu ZW, Li YL, Xiong XQ (2011) Novel electrochemical sensor based on functionalized graphene for simultaneous determination of adenine and guanine in DNA. Colloid Surf B–Biointerfaces 82:543–549CrossRefGoogle Scholar
  24. 24.
    Zuo XL, He SL, Li D, Peng C, Huang Q, Song SP, Fan CH (2010) Graphene oxide–facilitated electron transfer of metalloproteins at electrode surfaces. Langmuir 26:1936–1939CrossRefGoogle Scholar
  25. 25.
    Liao HG, Wu H, Wang J, Liu J, Jiang YX, Sun SG, Lin YH (2010) Direct electrochemistry and electrocatalysis of myoglobin immobilized on graphene–CTAB–ionic liquid nanocomposite film. Electroanalysis 22:2297–2302CrossRefGoogle Scholar
  26. 26.
    Wu JF, Xu MQ, Zhao GC (2010) Graphene–based modified electrode for the direct electron transfer of cytochrome c and biosensing. Electrochem Commun 12:175–177CrossRefGoogle Scholar
  27. 27.
    Alwarappan S, Joshi RK, Ram MK, Kumar A (2010) Electron transfer mechanism of cytochrome c at graphene electrode. Appl Phys Lett 96:263702CrossRefGoogle Scholar
  28. 28.
    Liu KP, Zhang JJ, Yang GH, Wang CM, Zhu JJ (2010) Direct electrochemistry and electrocatalysis of hemoglobin based on poly(diallyldimethylammonium chloride) functionalized graphene sheets/room temperature ionic liquid composite film. Electrochem Commun 12:402–405CrossRefGoogle Scholar
  29. 29.
    Xu CH, Wang XB, Wang JC, Hu HT, Wan L (2010) Synthesis and photoelectrical properties of β–cyclodextrin functionalized graphene materials with high bio–recognition capability. Chem Phys Lett 498:162–167CrossRefGoogle Scholar
  30. 30.
    Gooding JJ, Wibowo R, Liu JQ, Yang WR, Losic D, Orbons S, Mearns FJ, Shapter JG, Hibbert DB (2003) Protein electrochemistry using aligned carbon nanotube arrays. J Am Chem Soc 125:9006–9007CrossRefGoogle Scholar
  31. 31.
    Pulcu GS, Elmore BL, Arciero DM, Hooper AB, Elliott SJ (2007) Direct electrochemistry of tetraheme cytochrome c (554) from Nitrosomonas europaea: Redox cooperativity and gating. J Am Chem Soc 129:1838–1839CrossRefGoogle Scholar
  32. 32.
    Wang JX, Li MX, Shi ZJ, Li NQ, Gu ZN (2002) Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single–wall carbon nanotubes. Anal Chem 74:1993–1997CrossRefGoogle Scholar
  33. 33.
    Alwarappan S, Prabhulkar S, Durygin A, Li CZ (2009) The effect of electrochemical pretreatment on the sensing performance of single walled carbon nanotubes. J Nanosci Nanotechnol 9:2991–2996CrossRefGoogle Scholar
  34. 34.
    Prabhulkar S, Alwarappan S, Liu GD, Li CZ (2009) Amperometric micro–immunosensor for the detection of tumor biomarker. Biosens Bioeletron 24:3524–3530CrossRefGoogle Scholar
  35. 35.
    Pellegrini GE, Carpico G, Coni E (2004) Electrochemical sensor for the detection and presumptive identification of quinolone and tetracycline residues in milk. Anal Chim Acta 520:13–18CrossRefGoogle Scholar
  36. 36.
    Zhang XQ, Guo Q, Cui DX (2009) Recent advances in nanotechnology applied to biosensors. Sensors 9:1033–1053CrossRefGoogle Scholar
  37. 37.
    Qi PF, Vermesh O, Grecu M, Javey A, Wang Q, Dai HJ, Peng S, Cho KJ (2003) Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection. Nano Lett 3:347–351CrossRefGoogle Scholar
  38. 38.
    Li G, Xu H, Huang WJ, Wang Y, Wu YS, Parajuli R (2008) A pyrrole quinoline quinine glucose dehydrogenase biosensor based on screen–printed carbon paste electrodes modified by carbon nanotubes. Meas Sci Technol 19:065203CrossRefGoogle Scholar
  39. 39.
    Kusakari A, Izumi M, Ohnuki H (2008) Preparation of an enzymatic glucose sensor based on hybrid organic–inorganic Langmuir–Blodgett films: Adsorption of glucose oxidase into positively charged molecular layers. Colloid Surf A–Physicochem Eng Asp 321:47–51CrossRefGoogle Scholar
  40. 40.
    Wang Y, Li YM, Tang LH, Lu J, Li JH (2009) Application of graphene–modified electrode for selective detection of dopamine. Electrochem Commun 11:889–892CrossRefGoogle Scholar
  41. 41.
    Ao ZM, Yang J, Li S, Jiang Q (2008) Enhanced of CO detection in Al doped graphene. Chem Phys Lett 461:276–279CrossRefGoogle Scholar
  42. 42.
    Peres NMR, Guinea F, Neto AHC (2006) Electronic properties of disordered two–dimensional carbon. Phys Rev B 73:125411CrossRefGoogle Scholar
  43. 43.
    Kang XH, Wang J, Wu H, Aksay IA, Liu J, Lin YH (2009) Glucose oxidase–graphene–chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens Bioeletron 25:901–905CrossRefGoogle Scholar
  44. 44.
    Wu P, Shao Q, Hu YJ, Jin J, Yin YJ, Zhang H, Cai CX (2010) Direct electrochemistry of glucose oxidase assembled on graphene and application to glucose detection. Electrochim Acta 55:8606–8614CrossRefGoogle Scholar
  45. 45.
    Yang MH, Choi BG, Park H, Hong WH, Lee SY, Park TJ (2010) Development of a glucose biosensor using advanced electrode modified by nanohybrid composing chemically modified graphene and ionic liquid. Electroanalysis 22:1223–1228CrossRefGoogle Scholar
  46. 46.
    Wang ZJ, Zhou XZ, Zhang J, Boey F, Zhang H (2009) Direct electrochemical reduction of single–layer graphene oxide and subsequent functionalization with glucose oxidase. J Phys Chem C 113:14071–14075CrossRefGoogle Scholar
  47. 47.
    Alwarappan S, Liu C, Kumar A, Li CZ (2010) Enzyme–doped graphene nanosheets for enhanced glucose biosensing. J Phys Chem C 114:12920–12924CrossRefGoogle Scholar
  48. 48.
    Liu Y, Yu DS, Zeng C, Miao ZC, Dai LM (2010) Biocompatible graphene oxide–based glucose biosensors. Langmuir 26:6158–6160CrossRefGoogle Scholar
  49. 49.
    Lin YH, Lu F, Tu Y, Ren ZF (2004) Glucose biosensors based on carbon nanotube nanoelectrode ensembles. Nano Lett 4:191–195CrossRefGoogle Scholar
  50. 50.
    Zeng GH, Xing YB, Gao J, Wang ZQ, Zhang X (2010) Unconventional layer–by–layer assembly of graphene multilayer films for enzyme–based glucose and maltose biosensing. Langmuir 26:15022–15026CrossRefGoogle Scholar
  51. 51.
    Jia F, Shan CS, Li FH, Niu L (2008) Carbon nanotube/gold nanoparticles/polyethylenimine–functionalized ionic liquid thin film composites for glucose biosensing. Biosens Bioeletron 24:945–950CrossRefGoogle Scholar
  52. 52.
    Li JW, Yu JJ, Zhao FQ, Zeng BZ (2007) Direct electrochemistry of glucose oxidase entrapped in nano gold particles–ionic liquid–N, N–dimethylformamide composite film on glasse carbon electrode and glucose sensing. Anal Chim Acta 587:33–40CrossRefGoogle Scholar
  53. 53.
    Pingarron JM, Yanez–Sedeno P, Gonzalez–Cortes A (2008) Gold nanoparticle–based electrochemical biosensors. Electrochim Acta 3:5848–5866CrossRefGoogle Scholar
  54. 54.
    Raj CR, Abdelrahman AI, Ohsaka T (2005) Gold nanoparticle–assisted electroeduction of oxygen. Electrochem Commun 7:888–893CrossRefGoogle Scholar
  55. 55.
    Shen YF, Zhang YJ, Zhang QX, Niu L, You TY, Ivaska A (2005) Immobilization of ionic liquid with polyelectrolyte as carrier. Chem Commun 33:4193–4195CrossRefGoogle Scholar
  56. 56.
    Yang M, Qu F, Li Y, He Y, Shen G, Yu R (2007) Direct electrochemistry of hemoglobin in gold nanowire array. Biosens Bioeletron 23:414–420CrossRefGoogle Scholar
  57. 57.
    Zhang YJ, Li J, Shen YF, Wang MJ, Li JH (2004) Poly–L–lysine functionalized of single–walled carbon nanotubes. J Phys Chem B 108:15343–15346CrossRefGoogle Scholar
  58. 58.
    Zhou KF, Zhu YH, Yang XL, Li CZ (2010) Electrocatalytic oxidation of glucose by the glucose oxidase immobilized in graphene–Au–nafion biocomposite. Electroanalysis 22:259–264CrossRefGoogle Scholar
  59. 59.
    Shan CS, Yang HF, Han DX, Zhang QX, Ivaska A, Niu L (2010) Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing. Biosens Bioeletron 25:1070–1074CrossRefGoogle Scholar
  60. 60.
    Chen XP, Ye HZ, Wang WZ, Qiu B, Lin ZY, Chen GN (2010) Electrochemiluminescence biosensor for glucose based on graphene/nafion/GOD film modified glassy carbon electrode. Electroanalysis 22:2347–2352CrossRefGoogle Scholar
  61. 61.
    Zhang Q, Wu SY, Zhang L, Lu J, Verproot F, Liu Y, Xing ZQ, Li JH, Song XM (2011) Fabrication of polymeric ionic liquid/grapohene nanocomposite for glucose oxidase immobilization and direct electrochemistry. Biosens Bioeletron 26:2632–2637CrossRefGoogle Scholar
  62. 62.
    Liu Y, Wang MK, Zhao F, Guo ZH, Chen HJ, Dong SJ (2005) Direct electron transfer and electrocatalysis of microperoxidase immobilized on nanohybrid film. J Electroanal Chem 581:1–10CrossRefGoogle Scholar
  63. 63.
    Jiang HJ, Zhao Y, Yang H, Akins DL (2009) Synthesis and electrochemical properties of single–walled carbon nanotube–gold nanoparticle composites. Mater Chem Phys 114:879–883CrossRefGoogle Scholar
  64. 64.
    Zhou Y, Liu S, Jiang HJ, Yang H, Chen HY (2010) Direct electrochemistry and bioelectrocatalysis of microperoxidase–11 immobilized on chitosan–graphene nanocomposite. Electroanalysis 22:1323–1328CrossRefGoogle Scholar
  65. 65.
    Lu Q, Dong XC, Li LJ, Hu X (2010) Direct electrochemistry–based hydrogen peroxide biosensor formed from single–layer graphene nanoplatelet–enzyme composite film. Talanta 82:1344–1348CrossRefGoogle Scholar
  66. 66.
    Dong XC, Shi YM, Zhao Y, Chen DM, Ye J, Yao YG, Gao F, Ni ZH, Yu T, Shen ZX, Huang YX, Chen P, Li LJ (2009) Symmetry breaking of graphene monolayers by molecular detection. Phys Rev Lett 102:135501CrossRefGoogle Scholar
  67. 67.
    Zhou KF, Zhu YH, Yang XL, Luo J, Li CZ, Luan SR (2010) A novel peroxide biosensor based on Au–graphene–HRP–chitosan biocomposites. Electrochim Acta 55:3055–3060CrossRefGoogle Scholar
  68. 68.
    Zeng Q, Cheng JS, Tang LH, Liu XF, Liu YZ, Li JH, Jiang JH (2010) Self–assembled graphene–enzyme hierarchical nanostructures for electrochemical biosensing. Adv Funct Mater 20:3366–3372CrossRefGoogle Scholar
  69. 69.
    Zhang Q, Qiao Y, Hao F, Zhang L, Wu SY, Li Y, Li JH, Song XM (2010) Fabrication of a biocompatible and conductive platform based on a single–stranded DNA/graphene nanocomposite for direct electrochemistry and electrocatalysis. Chem–Eur J 16:8133–8139Google Scholar
  70. 70.
    Liu WS, Chen DL, Du WB, Nichols KP, Ismagilov RF (2010) Slipchip for immunoassays in nanoliter volumes. Anal Chem 82:3276–3282CrossRefGoogle Scholar
  71. 71.
    Cui RJ, Pan HC, Zhu JJ, Chen HY (2007) Versatile immunosensor using CdTe quantum dots as electrochemical and fluorescent labels. Anal Chem 79:8494–8501CrossRefGoogle Scholar
  72. 72.
    Fan AP, Lau C, Lu JZ (2005) Magnetic bead–based chemiluminescent metal immunoassay with a colloidal gold label. Anal Chem 77:3238–3242CrossRefGoogle Scholar
  73. 73.
    Papkovsky DP, O’Riordan TC, Guilbault GG (1999) An immunosensor based on the glucose oxidase label and optical oxygen detection. Anal Chem 71:1568–1573CrossRefGoogle Scholar
  74. 74.
    Pohanka M, Skládal P (2008) Electrochemical biosensors–principles and applications. J Appl Biomed 6:57–64Google Scholar
  75. 75.
    Daniels JS, Pourmand N (2007) Label–free impedance biosensors: Opportunities and challenges. Electroanalysis 19:1239–1257CrossRefGoogle Scholar
  76. 76.
    Wang GF, Huang H, Zhang G, Zhang XJ, Fang B, Wang L (2010) Gold nanoparticles/L–cysteine/graphene composite based immobilization strategy for an electrochemical immunosensor. Anal Meth 2:1692–1697CrossRefGoogle Scholar
  77. 77.
    Su BL, Tang J, Huang JX, Yang HH, Qiu B, Chen GN, Tang DP (2010) Graphene and nanogold–functionalized immunosensing interface with enhanced sensitivity for one–step electrochemical immunoassay of alpha–fetoprotein in human serum. Electroanalysis 22:2720–2728CrossRefGoogle Scholar
  78. 78.
    Yang MH, Javadi A, Li H, Gong SQ (2010) Ultrasensitive immunosensor for the detection of cancer biomarker based on graphene sheet. Biosens Bioeletron 26:560–565CrossRefGoogle Scholar
  79. 79.
    Zhong ZY, Wu W, Wang D, Wang D, Shan JL, Qiong Y, Zhang ZM (2010) Nanogold–enwrapped graphene nanocomposites as trace labels for sensitivity enhancement of electrochemical immunosensors in clinical immunoassays: carcinoembryonic antigen as a model. Biosens Bioeletron 25:2379–2383CrossRefGoogle Scholar
  80. 80.
    Du D, Zou ZX, Shin Y, Wang J, Wu H, Engelhard MH, Liu J, Aksay IA, Lin YH (2010) Sensitive immunosensor for cancer biomarker based on dual signal amplification strategy of graphene sheets and multienzyme functionalized carbon nanospheres. Anal Chem 82:2989–2995CrossRefGoogle Scholar
  81. 81.
    Du D, Wang LM, Shao YY, Wang J, Engelhard MH, Lin YH (2011) Functionalized graphene oxide as a nanocarrier in a multienzyme labeling amplification strategy for ultrasensitive electrochemical immunoassay of phosphorylated p53 (S392). Anal Chem 83:746–752CrossRefGoogle Scholar
  82. 82.
    Wei Q, Mao KX, Wu D, Dai YX, Yang J, Du B, Yang MH, Li H (2010) A novel label–free electrochemical immunosensor based on graphene and thionine nanocomposite. Sens Actuator B–Chem 49:314–318CrossRefGoogle Scholar
  83. 83.
    Cai YY, Li H, Du B, Yang MH, Li Y, Wu D, Zhao YF, Dai YX, Wei Q (2011) Ultrasensitive electrochemical immunoassay for BRCA1 using BMIM·BF4–coated SBA–15 as labels and functionalized graphene as enhancer. Biomaterials 32:2117–2123CrossRefGoogle Scholar
  84. 84.
    Bossi A, Piletsky SA, Piletska EV, Righetti PG, Turner APF (2000) An assay for ascorbic acid based on polyaniline–coated microplates. Anal Chem 72:4296–4300CrossRefGoogle Scholar
  85. 85.
    Martin C (1998) A review with no refs. on the development of new pharmaceuticals to treat parkinson’s disease. Chem Brit 34:40–42Google Scholar
  86. 86.
    Wightman RM, May LJ, Michael AC (1988) Detection of dopamine dynamics in the brain. Anal Chem 60:769A–779ACrossRefGoogle Scholar
  87. 87.
    Heinig M, Johnson RJ (2006) Role of uric acid in hypertension, renal disease, and metabolic syndrome. Clevel Clin J Med 73:1059–1064CrossRefGoogle Scholar
  88. 88.
    Lin XH, Zhang YF, Chen W, Wu P (2007) Electrocatalytic oxidation and determination of dopamine in the presence of ascorbic acid and uric acid at a poly(p–nitrobenzenazo resorcinol) modified glassy carbon electrode. Sens Actuator B–Chem 122:309–314CrossRefGoogle Scholar
  89. 89.
    Fan Y, Lu HT, Liu JH, Yang CP, Jing QS, Zhang YX, Yang XK, Huang KJ (2011) Hydrothermal preparation and electrochemical sensing properties of TiO2–graphene nanocomposite. Colloid Surf B–Biointerfaces 83:78–82CrossRefGoogle Scholar
  90. 90.
    Fan Y, Liu JH, Lu HT, Zhang Q (2011) Electrochemistry and voltammetric determination of L–tryptophan and L–tyrosine using a glassy carbon electrode modified with a Nafion/TiO2–graphene composite film. Microchim Acta doi: 10.1007/s00604-011-0556-9
  91. 91.
    Fu CP, Kuang YF, Huang ZY, Wang X, Du NN, Chen JH, Zhou HH (2010) Electrochemical co–reduction synthesis of graphene/Au nanocomposites in ionic liquid and their electrochemical activity. Chem Phys Lett 499:250–253CrossRefGoogle Scholar
  92. 92.
    Kim YR, Bong S, Kang YJ, Yang Y, Mahajan RK, Kim JS, Kim H (2010) Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes. Biosens Bioeletron 25:2366–2369CrossRefGoogle Scholar
  93. 93.
    Tan L, Zhou KG, Zhang YH, Wang HX, Wang XD, Guo YF, Zhang HL (2010) Nanomolar detection of dopamine in the presence of ascorbic acid at β–cyclodextrin/graphene nanocomposite platform. Electrochem Commun 12:557–560CrossRefGoogle Scholar
  94. 94.
    Li FH, Chai J, Yang HF, Han DX, Niu L (2010) Synthesis of Pt/ionic liquid/graphene nanocomposite and its simultaneous determination of ascorbic acid and dopamine. Talanta 81:1063–1068CrossRefGoogle Scholar
  95. 95.
    Zhang FY, Li YJ, Gu YE, Wang ZH, Wang CM (2011) One–pot solvothermal synthesis of a Cu2O/graphene nanocomposite and its application in an electrochemical sensor for dopamine. Microchim Acta doi: 10.1007/s00604-010-0535-6
  96. 96.
    Yang SL, Xu BF, Zhang JQ, Huang XD, Ye JS, Yu CZ (2010) Controllable adsorption of reduced graphene oxide onto self–assembled alkanethiol monolayers on gold electrodes: Tunable electrode dimension and potential electrochemical applications. J Phys Chem C 114:4389–4393CrossRefGoogle Scholar
  97. 97.
    Alwarappan S, Erdem A, Liu C, Li CZ (2009) Probing the electrochemical properties of graphene nanosheets for biosensing applications. J Phys Chem C 113:8853–8857CrossRefGoogle Scholar
  98. 98.
    Hong WJ, Bai H, Xu YX, Yao ZY, Gu ZZ, Shi GQ (2010) Preparation of gold nanoparticle/graphene composites with controlled weight contents and their application in biosensors. J Phys Chem C 114:1822–1826CrossRefGoogle Scholar
  99. 99.
    Keeley GP, O’Neill A, McEvoy N, Peltekis N, Coleman JN, Duesberg GS (2010) Electrochemical ascorbic acid sensor based on DMF–exfoliated graphene. J Mater Chem 20:7864–7869CrossRefGoogle Scholar
  100. 100.
    Chang JL, Chang KH, Hu CC, Cheng WL, Zen JM (2010) Improved voltammetric peak separation and sensitivity of uric acid and ascorbic acid at nanoplatelets of graphitic oxide. Electrochem Commun 12:596–599CrossRefGoogle Scholar
  101. 101.
    Zhang J, Lei JP, Pan R, Xue YD, Ju HX (2010) Highly sensitive electrocatalytic biosensing of hypoxanthine based on functionalization of graphene sheets with water–soluble conducting graft copolymer. Biosens Bioeletron 26:371–376CrossRefGoogle Scholar
  102. 102.
    Yin HS, Zhou YL, Ma Q, Ai SY, Chen QP, Zhu LS (2010) Electrocatalytic oxidation behavior of guanosine at graphene, chitosan and Fe3O4 nanoparticles modified glassy carbon electrode and its determination. Talanta 82:1193–1199CrossRefGoogle Scholar
  103. 103.
    Yin HS, Zhou YL, Ma Q, Ai SY, Ju P, Zhu LS, Lu LA (2010) Electrochemical oxidation behavior of guanine and adenine on graphene–Nafion composite film modified glassy carbon electrode and the simultaneous determination. Process Biochem 45:1707–1712CrossRefGoogle Scholar
  104. 104.
    Liu H, Gao J, Xue MQ, Zhu N, Zhang MN, Cao TB (2009) Processing of graphene for electrochemical application: Noncovalently functionalize graphene sheets with water–soluble electroactive methylene green. Langmuir 25:12006–12010CrossRefGoogle Scholar
  105. 105.
    Wang D, Li YG, Hasin P, Wu YY (2011) Preparation, characterization, and electrocatalytic performance of graphene–methylene blue thin films. Nano Res 4:124–130CrossRefGoogle Scholar
  106. 106.
    Tang LH, Wang Y, Li YM, Feng HB, Lu J, Li JH (2009) Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv Funct Mater 19:2782–2789CrossRefGoogle Scholar
  107. 107.
    Lin WJ, Liao CS, Jhang JH, Tsai YC (2009) Graphene modified basal and edge plane pyrolytic graphite electrodes for electrocatalytic oxidation of hydrogen peroxide and β-nicotinamide adenine dinucleotide. Electrochem Commun 11:2153–2156CrossRefGoogle Scholar
  108. 108.
    Zhu J, Chen X, Yang WS (2010) A high performance electrochemical sensor for NADH based on graphite nanosheet modified electrode. Sens Actuator B–Chem 150:564–568CrossRefGoogle Scholar
  109. 109.
    Shan CS, Yang HF, Han DX, Zhang QX, Ivaska A, Niu L (2010) Electrochemical determination of NADH and ethanol based on ionic liquid–functionalized graphene. Biosens Bioeletron 25:1504–1508CrossRefGoogle Scholar
  110. 110.
    Punckt C, Pope MA, Liu J, Lin YH, Aksay IA (2011) Electrochemical performance of graphene as effected by electrode porosity and graphene functionalization. Electroanalysis 22:2834–2841CrossRefGoogle Scholar
  111. 111.
    Liu Q, Li Y, Zhang LY, Li D, Fan CH, Long YT (2011) Comparative studies on electrocatalytic activities of chemically reduced graphene oxide and electrochemically reduced graphene oxide noncovalently functionalized with poly(methylene blue). Electroanalysis 22:2862–2870CrossRefGoogle Scholar
  112. 112.
    Kang XH, Wang J, Wu H, Liu J, Aksay IA, Lin YH (2010) A graphene–based electrochemical sensor for sensitive detection of paracetamol. Talanta 81:754–759CrossRefGoogle Scholar
  113. 113.
    Dai HJ, Ye JS, Zhang JQ, Huang XD, Yu CZ (2010) Graphene nanosheets modified glassy carbon electrode as a highly sensitive and selective voltammetric sensor for rutin. Electroanalysis 22:2399–2406CrossRefGoogle Scholar
  114. 114.
    Yin HS, Zhou YL, Cui L, Liu T, Ju P, Zhu LS, Ai SY (2011) Sensitive voltammetric determination of rutin in pharmaceuticals, human serum, and traditional Chinese medicines using a glassy carbon electrode coated with graphene nanosheets, chitosan, and a poly(amido amide) dendrimer. Microchim Acta doi: 10.1007/s00604-011-0568-5
  115. 115.
    Guo YJ, Guo SJ, Ren JT, Zhai YM, Dong SJ, Wang EK (2010) Cyclodextrin functionalized graphene nanosheets with high supramolecular recognition capability: Synthesis and host–guest inclusion for enhanced electrochemical performance. ACS Nano 4:4001–4010CrossRefGoogle Scholar
  116. 116.
    Shen L, Li Z, He PL (2010) Electrochemical behavior of β2–agonists at graphite nanosheet modified electrodes. Electrochem Commun 12:876–881CrossRefGoogle Scholar
  117. 117.
    Li J, Chen JH, Zhang XL, Lu CH, Yang HH (2010) A novel sensitive detection platform for antitumor herbal drug aloe–emodin based on the graphene modified electrode. Talanta 83:553–558CrossRefGoogle Scholar
  118. 118.
    Yin HS, Ma Q, Zhou YL, Ai SY, Zhu LS (2010) Electrochemical behavior and voltammetric determination of 4–aminophenol based on graphene–chitosan composite film modified glassy carbon electrode. Electrochim Acta 55:7102–7108CrossRefGoogle Scholar
  119. 119.
    Li N, Zhu MF, Qu ML, Gao X, Li XW, Zhang WD, Zhang JQ, Ye JS (2011) Iron–tetrasulfophthalocyanine fnctionalized graphene nanosheets: Attractive hybrid nanomaterials for electrocatalysis and electroanalysis. J Electroanal Chem 651:12–18CrossRefGoogle Scholar
  120. 120.
    El–Sayed M, Verpoorte R (2004) Growth, metabolic profiling and enzymes activities of Catharanthus roseus seedings treated with plant growth regulators. Plant Growth Regul 44:53–58CrossRefGoogle Scholar
  121. 121.
    Zadra C, Borgogni A, Marucchini C (2006) Quantification of jasmonic acid by SPME in tomato plants stressed by ozone. J Agric Food Chem 54:9317–9321CrossRefGoogle Scholar
  122. 122.
    Creelman RA, Tierney ML, Mullet JE (1992) Jasmonic acid/methyl jasmonate accumulate in wounded soybean hypocotyls and modulate wound gene expression. Proc Natl Acad Sci U S A 89:4938–4941CrossRefGoogle Scholar
  123. 123.
    Meyer R, Rautenbach GF, Dubery IA (2003) Identification and quantificatiom of methyl jasmonate in leaf volatiles of Arabidopsis thaliana using solid–phase microextraction in combination with gas chromatography and mass spectrometry. Phytochem Anal 14:155–159CrossRefGoogle Scholar
  124. 124.
    Wilbert SM, Ericsson LH, Gordon MP (1998) Quantification of jasmonic acid, methyl jasmonate, and salicylic acid in plants by capillary liquid chromatography electrospray tandem mass spectrometry. Anal Biochem 257:186–194CrossRefGoogle Scholar
  125. 125.
    Flores G, Blanch GP, Ruiz del Castillo ML (2008) Through oven transfer adsorption–desorptiom interface for the analysis of methyl jasmonate in aromatic samples by on–line RPLC–GC. J Sep Sci 31:1207–1214CrossRefGoogle Scholar
  126. 126.
    Gan T, Hu CG, Chen ZL, Hu SS (2010) Fabrication and application of a novel plant hormone sensor for the determination of methyl jasmonate based on self–assembling of phosphotungstic acid–graphene oxide nanohybrid on graphite electrode. Sens Actuator B–Chem 151:8–14CrossRefGoogle Scholar
  127. 127.
    Gan T, Hu CG, Chen ZL, Hu SS (2010) A disposable electrochemical sensor for the determination of indole–3–acetic acid based on poly(safranine T)–reduced graphene oxide nanocomposite. Talanta doi: 10.1016/j.talanta.2011.03.070
  128. 128.
    Wang J, Hocevar SB, Ogorevc B (2004) Carbon nanotube–modified glassy carbon electrode for adsorptive stripping voltammetric detection of ultratrace levels of 2,4,6–trinitrotoluene. Electrochem Commun 6:176–179CrossRefGoogle Scholar
  129. 129.
    Stringer RC, Gangopadhyay S, Grant SA (2010) Detection of nitroaromatic explosive using a fluorescent–labeled imprinted polymer. Anal Chem 82:4015–4019CrossRefGoogle Scholar
  130. 130.
    Goh MS, Pumera M (2011) Graphene–based electrochemical sensor for detection of 2,4,6–trinitrotoluene (TNT) in seawater: the comparison of single–, few–, and multilayer graphene nanoribbons and graphite microparticles. Anal Bioanal Chem 399:127–131CrossRefGoogle Scholar
  131. 131.
    Guo CX, Lu ZS, Lei Y, Li CM (2010) Ionic liquid–graphene composite for ultratrace explosive trinitrotoluene detection. Electrochem Commun 12:1237–1240CrossRefGoogle Scholar
  132. 132.
    Tang LH, Feng HB, Cheng JS, Li JH (2010) Uniform and rich–wrinkled electrophoretic deposited graphene film: A robust electrochemical platform for TNT sensing. Chem Commun 46:5882–5884CrossRefGoogle Scholar
  133. 133.
    Guo CX, Lei Y, Li CM (2011) Porphyrin functionalized graphene for sensitive electrochemcial detection of ultratrace explosives. Electroanalysis 23:885–893CrossRefGoogle Scholar
  134. 134.
    Wang L, Zhang XH, Xiong HY, Wang SF (2010) A novel nitromethane biosensor based on biocompatible conductive redox graphene–chitosan/hemoglobin/graphene/room temperature ionic liquid matrix. Biosens Bioeletron 26:991–995CrossRefGoogle Scholar
  135. 135.
    Ensafi AA, Mirmomtaz E (2005) Electrocatalytic oxidation of hydrazine with pyrogallol red as a mediator on glassy carbon electrode. J Electroanal Chem 583:176–183CrossRefGoogle Scholar
  136. 136.
    Vernot EH, Macewen JD, Bruner RH, Haun CC, Kinkead ER, Prentice DE, Hall A III, Schmidt RE, Eason RL, Hubbard GB, Young JT (1985) Long–term inhalation toxicity of hydrazine. Toxicol Sci 5:1050–1064CrossRefGoogle Scholar
  137. 137.
    Wang Y, Wan Y, Zhang D (2010) Reduced graphene sheets modified glassy carbon electrode for electrocatalytic oxidation of hydrazine in alkaline media. Electrochem Commun 12:187–190CrossRefGoogle Scholar
  138. 138.
    Wang C, Zhang L, Guo ZH, Xu JG, Wang HY, Zhai KF, Zhuo X (2010) A novel hydrazine electrochemical sensor based on the high specific surface area graphene. Microchim Acta 169:1–6CrossRefGoogle Scholar
  139. 139.
    Wei LL, Borowiec J, Zhu LH, Zhang JD (2011) Electrochemical sensor for monitoring the photodegradation of catechol based on DNA–modified grraphene oxide. Microchim Acta doi: 10.1007/s00604-011-0580-9
  140. 140.
    Chen LY, Tang YH, Wang K, Liu CB, Luo SL (2011) Direct electrodeposition of reduced graphene oxide on glassy carbon electrode and its electrochemical application. Electrochem Commun 13:133–137CrossRefGoogle Scholar
  141. 141.
    Du HJ, Ye JS, Zhang JQ, Huang XD, Yu CZ (2011) A voltammetric sensor based on graphene–modified electrode for simultaneous determination of catechol and hydroquinone. J Electroanal Chem 650:209–213CrossRefGoogle Scholar
  142. 142.
    Yan XP, Yin XB, Jiang DQ, He XW (2003) Speciation of mercury by hydrostatically modified electroosmotic flow capillary electrophoresis coupled with volatile species generation atomic fluorescence spectrometry. Anal Chem 75:1726–1732CrossRefGoogle Scholar
  143. 143.
    Xu H, Zeng LP, Xing SJ, Shi GY, Chen JS, Xian YZ, Jin LT (2008) Highly ordered platinum–nanotube arrays for oxidative determination of trace arsenic(III). Electrochem Commun 10:1893–1896CrossRefGoogle Scholar
  144. 144.
    Cerutti S, Silva MF, Gasquez JA, Olsina RA, Martinez LD (2003) On–line preconcentration/determination of cadmium in drinking water on activated carbon using 8–hydroxyquinoline in a flow injection system coupled to an inductively coupled plasma optical emission spectrometer. Spectroc Acta Pt B–Atom Spectr 58:43–50CrossRefGoogle Scholar
  145. 145.
    Tsai YC, Davis J, Compton RG (2000) Sono–anodic stripping voltammetric determination of cadmium in the presence of surfactant. Fresen J Anal Chem 368:415–417CrossRefGoogle Scholar
  146. 146.
    Song Y, Swain GM (2007) Development of a method for total inorganic arsenic analysis using anodic stripping voltammetry and a Au–Coated, diamond thin–film electrode. Anal Chem 79:2412–2420CrossRefGoogle Scholar
  147. 147.
    Xu H, Zeng LP, Xing SJ, Xian YZ, Shi GY, Jin LT (2008) Ultrasensitive voltammetric detection of trace lead(II) and cadmium(II) using MWCNTs–Nafion/bismuth composite electrodes. Electroanalysis 20:2655–2662CrossRefGoogle Scholar
  148. 148.
    Gong JM, Zhou T, Song DD, Zhang LZ (2010) Monodispersed Au nanoparticles decorated graphene as an enhanced sensing platform for ultrasensitive stripping voltammetric detection of mercury(II). Sens Actuator B–Chem 150:491–497CrossRefGoogle Scholar
  149. 149.
    Li J, Guo SJ, Zhai YM, Wang EK (2009) Nafion–graphene nanocomposite film as enhanced sensing platform for ultrasensitive determination of cadmium. Electrochem Commun 11:1085–1088CrossRefGoogle Scholar
  150. 150.
    Li J, Guo SJ, Zhai YM, Wang EK (2009) High–sensitivity determination of lead and cadmium based on the Nafion–graphene composite film. Anal Chim Acta 649:196–201CrossRefGoogle Scholar
  151. 151.
    Lu GH, Ocola LE, Chen JH (2009) Reduced graphene oxide for room–temperature gas sensors. Nanotechnology 20:445502CrossRefGoogle Scholar
  152. 152.
    Wu XM, Hu YJ, Jin J, Zhou NL, Wu P, Zhang H, Cai CX (2010) Electrochemical approach for detection of extracellular oxygen released from erythrocytes based on graphene film integrated with laccase and 2,2–azino–bis(3–ethylbenzothiazoline–6–sulfonic acid). Anal Chem 82:3588–3596CrossRefGoogle Scholar
  153. 153.
    Lange U, Hirsch T, Mirsky VM, Wolbeis OS (2010) Hydrogen sensor based on a graphene–palladium nanocomposite. Electrochim Acta. doi: 10.1016/j.electacta.2010.10.078
  154. 154.
    Ng SR, Guo CX, Li CM (2011) Highly sensitive nitric oxide sensing using three–dimensional graphene/ionic liquid nanocomposite. Electroanalysis 23:442–448CrossRefGoogle Scholar
  155. 155.
    Karyakin AA, Karyakina EE (2001) Electroanalytical applications of Prussian Blue and its analogs. Russ Chem Bull 50:1811–1817CrossRefGoogle Scholar
  156. 156.
    de Mattos IL, Shiraishi KA, Braz AD, Fernandes JR (2003) Hydrogen peroxide: Importance and determination. Quim Nova 26:373–380CrossRefGoogle Scholar
  157. 157.
    Li LM, Xu SJ, Du ZF, Gao YF, Li JH, Wang TH (2010) Electrografted poly(N–mercaptoethyl acrylamide) and Au nanoparticles based organic/inorganic film: A platform for the high–performance electrochemical biosensors. Chem–Asian J 5:919–924Google Scholar
  158. 158.
    Lu XB, Zhou JH, Lu W, Liu Q, Li JH (2008) Carbon nanofiber–based composites for the construction of mediator–free biosensors. Biosens Bioeletron 23:1236–1243CrossRefGoogle Scholar
  159. 159.
    Wang CH, Yang C, Song YY, Gao W, Xia XH (2005) Adsorption and direct electron transfer from hemoglobin into a three–dimensionally ordered macroporous gold film. Adv Funct Mater 15:1267–1275CrossRefGoogle Scholar
  160. 160.
    Zhang L (2008) Direct electrochemistry of cytochrome c at ordered macroporous active carbon electrode. Biosens Bioeletron 23:1610–1615CrossRefGoogle Scholar
  161. 161.
    Liu HY, Rusling JF, Hu NF (2004) Electroactive core–shell nanocluster films of heme proteins, polyelectrolytes, and silica nanoparticles. Langmuir 20:10700–10705CrossRefGoogle Scholar
  162. 162.
    Kang X, Wang J, Tang Z, Wu H, Lin YH (2009) Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in hybrid organic–inorganic film of chitosan/sol–gel/carbon nanotubes. Talanta 78:120–125CrossRefGoogle Scholar
  163. 163.
    Song YY, Zhang D, Xia XH (2005) Nonenzymatic glucose detection by using a three–dimensionally ordered, macroporous platinum template. Chem–Eur J 11:2177–2182Google Scholar
  164. 164.
    Yu JJ, Ma JR, Zhao FQ, Zeng BZ (2008) Development of amperometric glucose biosensor through immobilizing enzyme in a Pt nanoparticles/mesoporous carbon matrix. Talanta 74:1586–1591CrossRefGoogle Scholar
  165. 165.
    Cui HF, Ye JS, Zhang WD, Li CM, Luong JHT, Sheu FS (2007) Selective and sensitive electrochemical detection of glucose in neutral solution using platinum–lead alloy nanoparticle/carbon nanotube nanocomposites. Anal Chim Acta 594:175–183CrossRefGoogle Scholar
  166. 166.
    Li LM, Du ZF, Liu S, Hao QY, Wang YG, Li QH, Wang TH (2010) Anovel nonenzymatic hydrogen peroxide sensor based on MnO2/graphene oxide nanocomposite. Talanta 82:1637–1641CrossRefGoogle Scholar
  167. 167.
    Liu XW, Yao ZJ, Wang YF, Wei XW (2010) Graphene oxide sheet–prussian blue nanocomposites: Green synthesis and their extraodinary electrochemical properties. Colloid Surf B–Biointerfaces 81:508–512CrossRefGoogle Scholar
  168. 168.
    Jin E, Lu XF, Cui LL, Chao DM, Wang C (2010) Fabrication of graphene/prussian blue composite nanosheets and their electrocatalytic reduction of H2O2. Electrochim Acta 55:7230–7234CrossRefGoogle Scholar
  169. 169.
    Zhang YJ, Wen Y, Liu Y, Li D, Li JH (2004) Functionalization of single–walled carbon nanotubes with Prussian blue. Electrochem Commun 6:1180–1184CrossRefGoogle Scholar
  170. 170.
    Qiu JD, Xiong M, Liang RP, Zhang J, Xia XH (2008) In situ synthesis and characterization of multi–walled carbon nanotube/prussian blue nanocomposite materials and application. J Nanosci Nanotechnol 8:4453–4460CrossRefGoogle Scholar
  171. 171.
    Zou YJ, Sun LX, Xu F (2007) Biosensor based on polyaniline–Prussian Blue/multi–walled carbon nanotubes hybrid composites. Biosens Bioeletron 22:2669–2674CrossRefGoogle Scholar
  172. 172.
    Guo SJ, Wen D, Zhai YM, Dong SJ, Wang EK (2010) Platinum nanoparticle ensemble–on–graphene hybrid nanosheet: One–pot, rapid synthesis, and used as new electrode material for electrochemical sensing. ACS Nano 4:3959–3968CrossRefGoogle Scholar
  173. 173.
    Chen X, Fu CL, Yang WS (2009) Graphite nanosheet–based composites for mediator–free H2O2 biosensor. Analyst 134:2135–2140CrossRefGoogle Scholar
  174. 174.
    He YP, Zheng JB, Li KT, Sheng QL, Qiao NQ (2011) A hydrogen peroxide biosensor based on room temperature ionic liquid functionalized graphene modified carbon ceramic electrode. Chin J Chem 28:2507–2512CrossRefGoogle Scholar
  175. 175.
    Fang YX, Guo SJ, Zhu CZ, Zhai YM, Wang EK (2010) Self–assembly of cationic polyelectrolyte–functionalized graphene nanosheets and gold nanoparticles: A two–dimensional heterostructure for hydeogen peroxide sensing. Langmuir 26:11277–11282CrossRefGoogle Scholar
  176. 176.
    Patil AJ, Vickery JL, Scott TB, Mann S (2009) Aqueous stabilization and self–assembly of graphene sheets into layered bio–nanocomposites using DNA. Adv Mater 21:3159–3164CrossRefGoogle Scholar
  177. 177.
    Lv W, Guo M, Liang MH, Jin FM, Cui L, Zhi LJ, Yang QH (2010) Graphene–DNA hybrids: Self–assembly and electrochemical detection performance. J Mater Chem 20:6668–6673CrossRefGoogle Scholar
  178. 178.
    Vivekchand SRC, Rout CS, Subrahmanyam KS, Govindaraj A, Rao CNR (2008) Graphene–based electrochemical supercapacitors. J Chem Sci 120:9–13CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Key laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular SciencesWuhan UniversityWuhanChina
  2. 2.State Key Laboratory of Transducer TechnologyChinese Academy of SciencesBeijingChina

Personalised recommendations