Microchimica Acta

, 174:213 | Cite as

In-situ ionic liquid-dispersive liquid-liquid microextraction method to determine endocrine disrupting phenols in seawaters and industrial effluents

Original Paper

Abstract

We have evaluated an in-situ ionic liquid-dispersive liquid-liquid microextraction procedure for the determination of six endocrine disrupting phenols in seawaters and industrial effluents using HPLC. The optimized method requires 38 μL of the water-soluble ionic liquid 1-butyl-3-methylimidazolium chloride, and 5 mL of seawater or industrial effluent. After appropriate work-up, a drop (~10 μL) of an ionic liquid is formed that contains the analytes of interest. It is diluted with acetonitrile and injected into the HPLC system. This procedure is accomplished without heating or cooling the solutions. The method is characterized by (a) average relative recoveries of 90.2%, (b) enrichment factors ranging from 140 to 989, and (c) precisions (expressed as relative standard deviations) of less than 11% when using a spiking level of 10 ng mL−1. The limits of detection range from 0.8 ng mL−1 for 4-cumylphenol to 4.8 ng mL−1 for bisphenol-A.

Figure

Scheme of the in situ IL-DLIME procedure to determine endocrine disrupting phenols in environmental waters.

Keywords

Endocrine disrupting phenols Bisphenol A In situ ionic liquid-dispersive liquid-liquid microextraction Ionic liquids Environmental waters 

Notes

Acknowledgements

A.M.A. acknowledges funding from the Spanish Ministry of Innovation and Science (MICINN) project ref. CTQ2008-06253/BQU, and from the Canary Agency for Research and Innovation (ACIISI) reinforcement project ref. SolSubC20081000171. V.P. thanks the MICINN for the Ramón y Cajal contract with the University of La Laguna (ULL). J.L.D. thanks the ACIISI for the contract with the ULL.

Supplementary material

604_2011_636_MOESM1_ESM.doc (68 kb)
ESM 1 (DOC 67 kb)

References

  1. 1.
    Arthur CL, Pawliszyn J (1990) Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal Chem 62(19):2145CrossRefGoogle Scholar
  2. 2.
    Risticevic S, Niri VH, Vuckovic D, Pawliszyn J (2009) Recent developments in solid-phase microextraction. Anal Bioanal Chem 393(3):781CrossRefGoogle Scholar
  3. 3.
    Lee J, Lee HK, Rasmussen KE, Pedersen-Bjergaard S (2008) Environmental and bioanalytical applications of hollow fiber membrane liquid-phase microextraction: a review. Anal Chim Acta 624(2):253CrossRefGoogle Scholar
  4. 4.
    Xu L, Basheer C, Lee HK (2007) Developments in single-drop microextraction. J Chromatogr A 1152(1–2):184CrossRefGoogle Scholar
  5. 5.
    Rezaee M, Assadi Y, Milani Hosseini MR, Aghaee E, Ahmadi F, Berijani S (2006) Determination of organic compounds in water using dispersive liquid–liquid microextraction. J Chromatogr A 1116(1–2):1CrossRefGoogle Scholar
  6. 6.
    Herrera-Herrera AV, Asensio-Ramos M, Hernández-Borges J, Rodríguez-Delgado MA (2010) Dispersive liquid-liquid microextraction for determination of organic analytes. Trends Anal Chem 29(7):728CrossRefGoogle Scholar
  7. 7.
    Dadfarnia S, Shabani AMH (2010) Recent development in liquid phase microextraction for determination of trace level concentration of metals—A review. Anal Chim Acta 658(2):107CrossRefGoogle Scholar
  8. 8.
    Xie S, Xiang B, Zhang M, Deng H (2010) Determination of medroxyprogesterone in water samples using dispersive liquid-liquid microextraction with low solvent consumption. Microchim Acta 168(3–4):253CrossRefGoogle Scholar
  9. 9.
    Poole CF, Poole SK (2010) Extraction of organic compounds with room temperature ionic liquids. J Chromatogr A 1217(16):2268CrossRefGoogle Scholar
  10. 10.
    Sun P, Armstrong DW (2010) Ionic liquids in analytical chemistry. Anal Chim Acta 661(1):1CrossRefGoogle Scholar
  11. 11.
    Aguilera-Herrador E, Lucena R, Cárdenas S, Valcárcel M (2010) The roles of ionic liquids in sorptive microextraction techniques. Trends Anal Chem 29(7):602CrossRefGoogle Scholar
  12. 12.
    Zhou Q, Bai H, Xie G, Xiao J (2008) Temperature-controlled ionic liquid dispersive liquid phase micro-extraction. J Chromatogr A 1177(1):43CrossRefGoogle Scholar
  13. 13.
    Zhou Q, Bai H, Xie G, Xiao J (2008) Trace determination of organophosphorus pesticides in environmental samples by temperature-controlled ionic liquid dispersive liquid-phase microextraction. J Chromatogr A 1188(2):148CrossRefGoogle Scholar
  14. 14.
    Mallah MH, Shemirani F, Maragheh MG (2009) Ionic liquids for simultaneous preconcentration of some lanthanoids using dispersive liquid−liquid microextraction technique in uranium dioxide powder. Environ Sci Technol 43(6):1947CrossRefGoogle Scholar
  15. 15.
    Zhang H-F, Shi Y-P (2010) Temperature-assisted ionic liquid dispersive liquid–liquid microextraction combined with high performance liquid chromatography for the determination of anthraquinones in Radix et Rhizoma Rhei samples. Talanta 82(3):1010CrossRefGoogle Scholar
  16. 16.
    Zhou Q, Zhang X, Xiao J (2009) Ultrasound-assisted ionic liquid dispersive liquid-phase micro-extraction: a novel approach for the sensitive determination of aromatic amines in water samples. J Chromatogr A 1216(20):4361CrossRefGoogle Scholar
  17. 17.
    Liu Y, Zhao E, Zhu W, Gao H, Zhou Z (2009) Determination of four heterocyclic insecticides by ionic liquid dispersive liquid–liquid microextraction in water samples. J Chromatogr A 1216(6):885CrossRefGoogle Scholar
  18. 18.
    Pena MT, Casais MC, Mejuto MC, Cela R (2009) Development of an ionic liquid based dispersive liquid–liquid microextraction method for the analysis of polycyclic aromatic hydrocarbons in water samples. J Chromatogr A 1216(36):6356CrossRefGoogle Scholar
  19. 19.
    Zhao R-S, Wang X, Zhang L-L, Wang S-S, Yuan J-P (2011) Ionic liquid/ionic liquid dispersive liquid–liquid microextraction, a new sample enrichment procedure for the determination of hexabromocyclododecane diastereomers in environmental water samples. Anal Methods in press. doi: 10.1039/C0AY00708K.
  20. 20.
    Baghdadi M, Shemirani F (2009) In situ solvent formation microextraction based on ionic liquids: a novel sample preparation technique for determination of inorganic species in saline solutions. Anal Chim Acta 634(2):186CrossRefGoogle Scholar
  21. 21.
    Mahpishanian S, Shemirani F (2010) Preconcentration procedure using in situ solvent formation microextraction in the presence of ionic liquid for cadmium determination in saline samples by flame atomic absorption spectrometry. Talanta 82(2):471CrossRefGoogle Scholar
  22. 22.
    Vaezzadeh M, Shemirani F, Majidi B (2010) Microextraction technique based on ionic liquid for preconcentration and determination of palladium in food additive, sea water, tea and biological samples. Food Chem Toxicol 48(6):1455CrossRefGoogle Scholar
  23. 23.
    Yao C, Anderson JL (2009) Dispersive liquid–liquid microextraction using an in situ metathesis reaction to form an ionic liquid extraction phase for the preconcentration of aromatic compounds from water. Anal Bioanal Chem 395(5):1491CrossRefGoogle Scholar
  24. 24.
    Yao C, Li T, Twu P, Pitner WR, Anderson JL (2011) Selective extraction of emerging contaminants from water samples by dispersive liquid–liquid microextraction using functionalized ionic liquids. J Chromatogr A 1218(12):1556CrossRefGoogle Scholar
  25. 25.
    Wetherill YB, Akingbemi BT, Kanno J, McLachlan JA, Nadal A, Sonnenschei C, Watson CS, Zoelleri RT, Belcher SM (2007) In vitro molecular mechanisms of bisphenol A action. Reprod Toxicol 24(2):178CrossRefGoogle Scholar
  26. 26.
    Virtanen HE, Meyts ERD, Main KM, Skakkebaek NE, Toppari J (2005) Testicular dysgenesis syndrome and the development and occurrence of male reproductive disorders. Toxicol Appl Pharmacol 207(2):S501CrossRefGoogle Scholar
  27. 27.
    Bateman HL, Patisaul HB (2008) Disrupted female reproductive physiology following neonatal exposure to phytoestrogens or estrogen specific ligands is associated with decreased GnRH activation and kisspeptin fiber density in the hypothalamus. Neurotoxicology 29(6):988CrossRefGoogle Scholar
  28. 28.
    Richter CA, Birnbaum LS, Farabollini F, Newbold RR, Rubin BS, Talsness CE, Vandenbergh JG, Walser-Kuntz DR, Saal FSV (2007) In vivo effects of bisphenol A in laboratory rodent studies. Reprod Toxicol 24(2):199CrossRefGoogle Scholar
  29. 29.
    López-Darias J, Pino V, Ayala JH, González V, Afonso AM (2008) Micelle mediated extractions using nonionic surfactant mixtures and HPLC-UV to determine endocrine-disrupting phenols in seawaters. Anal Bioanal Chem 391(3):735CrossRefGoogle Scholar
  30. 30.
    López-Darias J, Germán-Hernández M, Pino V, Afonso AM (2010) Dispersive liquid–liquid microextraction versus single-drop microextraction for the determination of several endocrine-disrupting phenols from seawaters. Talanta 80(5):1611CrossRefGoogle Scholar
  31. 31.
    Pino V, Anderson JL, Ayala JH, González V, Afonso AM (2008) The ionic liquid 1-hexadecyl-3-methylimidazolium bromide as novel extracting system for polycyclic aromatic hydrocarbons contained in sediments using focused microwave-assisted extraction. J Chromatogr A 1182(2):145CrossRefGoogle Scholar
  32. 32.
    Yiantzi E, Psillakis E, Tyrovola K, Kalogerakis N (2010) Vortex-assisted liquid–liquid microextraction of octylphenol, nonylphenol and bisphenol-A. Talanta 80(5):2057CrossRefGoogle Scholar
  33. 33.
    Zhao R-S, Wang X, Yuan J-P, Zhang LL (2009) Solid-phase extraction of bisphenol A, nonylphenol and 4-octylphenol from environmental water samples using microporous bamboo charcoal, and their determination by HPLC. Microchim Acta 165(3–4):443CrossRefGoogle Scholar
  34. 34.
    Hernando MD, Mezcua M, Gómez MJ, Malato O, Agüera A, Fernández-Alba AR (2004) Comparative study of analytical methods involving gas chromatography–mass spectrometry after derivatization and gas chromatography–tandem mass spectrometry for the determination of selected endocrine disrupting compounds in wastewaters. J Chromatogr A 1047(1):129CrossRefGoogle Scholar
  35. 35.
    Gatidou G, Thomaidis NS, Stasinakis AS, Lekkas TD (2007) Simultaneous determination of the endocrine disrupting compounds nonylphenol, nonylphenol ethoxylates, triclosan and bisphenol A in wastewater and sewage sludge by gas chromatography–mass spectrometry. J Chromatogr A 1138(1–2):32CrossRefGoogle Scholar
  36. 36.
    Rezaee M, Yamini Y, Shariati S, Esrafili A, Shamsipur M (2009) Dispersive liquid–liquid microextraction combined with high-performance liquid chromatography-UV detection as a very simple, rapid and sensitive method for the determination of bisphenol A in water samples. J Chromatogr A 1216(9):1511CrossRefGoogle Scholar
  37. 37.
    Fattahi N, Assadi Y, Hosseini MRM, Jahromi EZ (2007) Determination of chlorophenols in water samples using simultaneous dispersive liquid–liquid microextraction and derivatization followed by gas chromatography-electron-capture detection. J Chromatogr A 1157(1–2):23CrossRefGoogle Scholar
  38. 38.
    Nagaraju D, Huang S-D (2007) Determination of triazine herbicides in aqueous samples by dispersive liquid–liquid microextraction with gas chromatography–ion trap mass spectrometry. J Chromatogr A 1161(1–2):89CrossRefGoogle Scholar
  39. 39.
    Yazdi AS, Razavi N, Yazdinejad SR (2008) Separation and determination of amitriptyline and nortriptyline by dispersive liquid–liquid microextraction combined with gas chromatography flame ionization detection. Talanta 75(5):1293CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Departamento de Química Analítica, Nutrición y BromatologíaUniversidad de La Laguna (ULL)La LagunaSpain

Personalised recommendations